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ABSTRACT

Autorotation maneuvers are required to perform a safe landing of a helicopter in

cases of engine loss in a single engine vehicle and transmission or tail rotor malfunc-

tion. The rise of autonomous helicopter technology, and the pilot skill required to

manually perform an autorotation, motivate the need for new autonomous autorota-

tion control laws. Previous approaches to automatic control for this maneuver have

relied on control law optimization based on a high-fidelity model of the helicopter,

or have attempted to match recorded trajectories flown by an expert human pilot.

In this paper, a new expert control system is proposed. The term “expert control

system” is used because the system is intended to mimic the actions that a human

pilot might take, does not require any iterative learning, model prediction, or opti-

mization at runtime, and is based on an inference system that involves fuzzy logic,

PID, and other conventional control techniques. The multi-stage control law drives

the helicopter to a near-optimal steady-state descent and uses an estimate of the

time to impact to safely flare and land the helicopter in the vast majority of flight

conditions. The control law is validated using a full 6-degree-of-freedom simulation

of both a full-size attack helicopter and a small hobby-class helicopter. The pro-

posed control design is highly flexible and may be used to perform fully autonomous

autorotation or to provide guidance to pilots during manual autorotation maneuvers.
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NOMENCLATURE

FAST_COL_INCREASE Collective adjustment rate for rapid adjustments
during the flare and landing phases (See Table 2.1)

h Altitude above ground level (−z)

[Ic]B Moment of inertia matrix about the center of mass
resolved in the body frame

IR Main rotor moment of inertia about shaft

K_COL Rotor collective gain for flare and landing phases
(See Table 2.1)

K_D_SS Gain on rotor speed time derivative for collec-
tive control during steady-state descent (See Ta-
ble 2.1)

KE Kinetic energy

K_P_SS Gain on rotor speed for collective control during
steady-state descent (See Table 2.1)

LANDING_MAX_ANGLE Maximum cap on roll and pitch angles during the
landing phase (See Table 2.1)

m Helicopter mass

p, q, r Helicopter angular rates in body frame

PRE_FLARE_MAX_ANGLE Maximum cap on roll and pitch angle during the
pre-flare phase (See Table 2.1)

R Main rotor radius

r Radial distance from rotor hub
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RPM_AUTO Desired main rotor rotation rate for the steady
state descent phase (See Table 2.1)

TAU Rotor collective adjustment time constant tuning
parameter for flare and landing phases (See Ta-
ble 2.1)

TOUCHDOWN_MAX_ANGLE Maximum cap on roll and pitch angles during the
touchdown phase (See Table 2.1)

TOUCHDOWN_COL_DECREASE Constant collective pitch rate during touchdown
phase (See Table 2.1)

TTIF Desired time to impact during the flare phase (See
Table 2.3)

TTI_F_MAX Maximum cap on the desired time to impact dur-
ing the flare phase (See Table 2.1)

TTI_L Desired time to impact during the landing phase
(See Tables 2.1 and 2.3)

TTLE Time to landing entry (See Table 2.3)

U_AUTO Desired forward speed for the steady state descent
phase (See Table 2.1)

udes Desired forward velocity

U_TOUCHDOWN Desired forward velocity at touchdown (See Ta-
ble 2.1)

u, v, w Helicopter velocity components in the body frame

x, y, z Helicopter position components in a North-East-
down coordinate system

β Blade flapping angle

β0, β1c, β1s First harmonic blade flapping states (See Sec-
tion 3.3)

vi



η Combined roll and pitch angle η =
√
φ2 + θ2

ηmax Maximum limit on combined roll and pitch angle

θ0 Main rotor collective blade pitch

θ1c Main rotor lateral cyclic blade pitch

θ1s Main rotor longitudinal cyclic blade pitch

θtr Tail rotor collective blade pitch

λi Main rotor induced inflow

λ0, λc, λs Component states of induced inflow distribution
(See Equation 3.7)

µsmall Membership function defining fuzzy set of small
velocities

φ, θ, ψ Roll, pitch, and yaw Euler angles

ψMR Main rotor azimuth angle

Ω Main rotor rotation rate
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1. INTRODUCTION

Helicopters are unique in their ability to provide efficient, flexible, and reliable

vertical takeoff and landing flight. However, because vertical lift is derived directly

from main rotor thrust (rather than indirectly through a wing as in fixed-wing air-

craft), they are much less forgiving than conventional aircraft in the event of power

loss. When a single engine helicopter encounters engine failure, or when any heli-

copter suffers a catastrophic transmission or tail rotor failure, a pilot must perform

autorotation to bring the helicopter to a safe landing. In the autorotation maneuver,

the engine does not provide power to the main rotor. Instead, the pilot uses the

air flowing through the rotor to maintain main rotor kinetic energy, enabling some

measure of control of the aircraft and allowing the pilot to slow the helicopter before

landing to minimize total velocity at impact.

An autorotative descent consists of entry, a steady state descent towards a suitable

landing site, and a flaring maneuver to dramatically reduce kinetic energy immedi-

ately before landing. If entry into the autorotation is delayed or if the maneuver is

otherwise executed poorly, the rotor rotation speed may drop to a level that is too

low for proper control, provides insufficient energy for the flare, or leads to excessive

blade flapping. These considerations result in a set of restricted height and veloc-

ity combinations known as the “dead man’s curve,” typically plotted on a so-called

Height-Velocity diagram, from which a successful autorotation is unlikely [1]. For

this reason, these conditions are largely avoided by pilots of single engine rotorcraft.

As single engine autonomous rotorcraft of all sizes become more prevalent, automatic

control laws for autorotation that protect expensive equipment and possibly human

passengers in cases of engine failure must be developed. These control laws may also
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be able to help human pilots autorotate safely from well within the “avoid” region

of the H-V diagram by providing real-time guidance in an advanced avionics system.

The autorotation maneuver requires significant pilot skill and historically has not

been carried out by automatic control systems. An early study of the autorotation

problem from an automatic control perspective is Johnson’s 1977 study on optimal

autorotation descent [2]. In this work, optimal descent trajectories and control laws

are calculated, but the results were intended to be used for vehicle design rather

than a real-time feedback controller. In the 1980s, Lee et al improved on this initial

analysis and suggested that the flight envelope for safe autorotation could be signif-

icantly enlarged using automatic control [3], and indeed a patent for such a system

using iterative optimization techniques was filed in 2011 [4].

Recent work has explored the autorotation problem for small, unmanned heli-

copters in the 5-150 lb range. This class of unmanned vehicle could be used for

observation and search and rescue support, among other potential missions. Hazawa

et al. created a traditional PI controller for landing a small helicopter [5]. Recently,

two other concepts for autorotation controllers on small helicopters have been pro-

posed. Abbeel et al. created a reinforcement learning controller that attempts to

match trajectories recorded from autorotative descents by an expert pilot. This

is the approach that has been most successfully validated [6]. Dalamagkidis et al.

used a one-dimensional vertical autorotation model and receding horizon neural-

network optimization to create a controller which was tested in simulation using

a one-dimensional model of a small helicopter. This controller was also tested for

full-size helicopters using both the one-dimensional model and X-Plane simulation

software [7]. It should be noted that the full size aircraft simulated in this work was

modified with a High Energy Rotor System (HERS) which increases autorotational

performance so that the low speed avoid region of the H-V diagram is significantly
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reduced or eliminated even without automatic control [8]. Some researchers have

focused on specific phases of a descent in autorotation. For example, Yomchinda

et al. have proposed a flight path planning algorithm for the steady-state descent

phase [9]. Tierney and Langelaan have presented a method for calculating the set of

flare entry points from which a helicopter can safely land [10]. Others have focused

on ways to reduce pilot workload during autorotation using simple control laws that

communicate to a pilot upon approaching a dangerous state during autorotation [11].

Though there has been considerable research in this area, previous approaches

have limitations. For example, Dalamagkidis’s approach is focused on axial vertical

descent, a problem which has very limited practical motivation since forward flight

is usually desirable to reduce the descent rate or maneuver to a landing site. The

approach taken by Abbeel et al. requires training data from an experienced pilot,

and it is likely that independent sets of training data would be needed for differ-

ent airframes and flight regimes. Dalamagkidis, Bachelder et al., and Yomchinda

et al. propose algorithms which involve iterative optimization of flight trajectories

[4, 7, 9]. It is possible that these optimization algorithms may be slow to converge

or may not even yield a usable solution under certain conditions. Iterative optimiza-

tion also requires more computational capability than a classical feedback control

law. Furthermore, these schemes may encounter problems if the computer model of

the vehicle is inaccurate. For example, even a high fidelity model could be compro-

mised if the actual takeoff weight is significantly different from the estimated weight

programmed into the computer. In such a case, the algorithm will yield a control

input solution that is optimal only for the model implemented in the computer, and

this may not result in a successful landing when applied to the physical vehicle.

The limitations described above are especially problematic during the critical flare

phase of flight. In the words of Tierney and Langelaan “Computing a safe, feasible
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flare trajectory in real time is extremely difficult because of the high dimensionality

of the problem, the limited computational resources likely to be available, and the

likelihood of external disturbances such as gusts.” [10].

The research presented here considers the possibility that a suboptimal controller

that mimics the actions of a human pilot performing an autorotation is the most prac-

tical approach. The proposed control law is a nonlinear mapping between measured

states and control outputs that does not require any iterative calculation or pre-

diction using a complex model. It is also easily scalable to any single main rotor

helicopter, from a micro-air-vehicle to a full-size utility helicopter. The controller

could be implemented as a closed-loop system on a fully-autonomous vehicle, or may

provide guidance to a human pilot as described by Keller et al. and others [4, 11].

The approach described here does not yet address the problem of finding and navigat-

ing to a suitable landing site, however, the steady-state descent controller is designed

deliberately to accommodate such maneuvers and could readily be combined with a

path planning algorithm such as that proposed by Yomchinda et al. [9].

This thesis presents the new control law and simulation results which provide

initial validation. In Chapter 2, the control architecture is described. A brief de-

scription of the high fidelity simulation model used to validate the control law is

presented in Chapter 3. Finally, simulation results for both a full sized single engine

Bell AH-1G Cobra helicopter and a small remote control Align TREX 600 helicopter

are given in Chapter 4.
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2. CONTROL LAW ARCHITECTURE

The term “expert system” has been used to describe a wide range of control

systems and other structures. The use of the term here is similar to its use by

Livchitz et al. applied their controller for unmanned landing of small fixed wing

aircraft [12]. There are two primary characteristics of both the new autorotation

controller and the one described by Livchitz that lead to the title “expert control

system”. First, the controllers are designed to imitate the thought process that an

expert human pilot might take. Second, the control system already contains “expert”

knowledge at flight time in the form of a deterministic mapping from vehicle and

controller states to specific control outputs, that is, there is no iterative learning,

high-fidelity model prediction, or optimization at runtime. The new autorotation

controller differs from many other expert systems including Livchitz’s in that it does

not use a single method such as fuzzy logic to apply the expert knowledge contained

in it. Instead, the new controller uses a combination of several structures including

crisp logic, fuzzy logic, and linear proportional-integral-derivative (PID) control.

The autorotation maneuver is divided into five fuzzily-defined regions based on

altitude and the projected time to impact assuming constant velocity. These regions

represent the phases of the autorotation maneuver that the pilot would progress

through and are described in Section 2.1. For each of these regions a low level

control law is defined to guide the dynamic system to the desired state.

The control law does require the definition of several tuning parameters. The

most notable requirement is the definition of the fuzzy boundaries of the flight phases.

There are also several other parameters that are specific to each flight phase that must

be defined. Throughout this text, the parameters that must be specified or tuned
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are indicated by the use of a fixed-width teletype font with underscores, e.g. U_AUTO.

These parameters are listed together with a brief description of each and values

used in simulation in Table 2.1 on page 7. They are referenced and discussed more

thoroughly in Sections 2.2 through 2.6. It should be noted that these parameters need

not require precise values, and can be tuned based on intuition, flight experience,

test data, and simulation to achieve acceptable results with reasonable effort.

The control inputs to the helicopter consist of the main rotor collective pitch,

θ0, the longitudinal cyclic pitch, θ1s, the lateral cyclic pitch, θ1c, and the tail rotor

collective pitch, θtr. Horizontal velocity, sideward velocity, and yaw control of the

helicopter are handled by a standard flight controller which will be referred to as the

velocity tracking controller. The autorotation controller recommends a desired near-

optimal forward speed to the helicopter velocity tracking controller which tracks these

commands through longitudinal and lateral cyclic inputs. In addition, a maximum

cap on the pitch and roll angles, ηmax is imposed to prevent drastic maneuvers in

certain conditions such as in close proximity to the ground. This velocity tracking

controller can be based on any control approach from a neural network to simple

PID. In most cases, this control system should be the same controller that is used

in normal powered flight since that controller will have been extensively tuned to

provide optimal tracking performance and will have been proven to be robust. An

additional outer-loop control block may be added to handle path planning to a

suitable landing site during the steady-state descent phase. For the simulations

presented here, a simple multi-layered PD controller was implemented for velocity

and yaw angle tracking through the θ1s, θ1c, and θtr control channels (see Section 2.7).

The autorotation controller directly handles the main rotor collective, θ0, since

it is the critical control input affecting the rotor rotational speed, Ω, which must

be carefully managed during autorotation. Since the desirable set point of the main
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rotor collective is highly dependent upon the helicopter mass and other parameters

which may be unknown at flight time, each sub-controller actually recommends an

adjustment to θ0 and observes the results to seek a suitable trim value for θ0 in much

the same way that a human pilot would make adjustments. Thus, the outputs of the

autorotation control law within each flight phase are a main rotor collective pitch

derivative, θ̇0, a desired forward velocity, udes, and maximum pitch and roll angle,

ηmax, sent to the velocity tracking controller. This control scheme is illustrated in

Figure 2.1

Table 2.1: Controller Parameters. This list is complete except for fuzzy definitions of
the flight phases and the estimates of the helicopter’s physical parameters required
to estimate kinetic energy. Note the “roundness” of the values selected for the AH-1;
none have more than two significant figures. This is because these parameters are
approximate and do not require precise tuning for good performance.

Parameter Value for AH-1G Value for TREX 600

Definition

U_AUTO 100 ft/s 10 ft/s

Desired forward speed for the steady state descent phase. This should be near the
recommended autorotation speed published in the helicopter manual, which should
be near the forward speed for minimum required power.

RPM_AUTO 34 rad/s 180 rad/s

Desired main rotor rotation rate for the steady state descent phase. This is often
near the normal operating RPM.

K_D_SS 0.03 s-1 0.003 s-1

Gain on rotor speed time derivative for collective control during steady-state descent

K_P_SS 0.01 (unitless) 0.001 (unitless)

Gain on rotor speed for collective control during steady-state descent

PRE_FLARE_MAX_ANGLE 10◦ 10◦

Maximum cap on roll and pitch angle during the pre-flare phase

7



Table 2.1 (continued)

Parameter Value for AH-1G Value for TREX 600

Definition

U_TOUCHDOWN 10 ft/s 1 ft/s

Desired forward velocity at touchdown

TTI_L 1.5 s 1.0 s

Desired time to impact during the landing phase

TTI_F_MAX 6 s 5 s

Maximum cap on the desired time to impact during the flare phase

K_COL 6 × 10−4 rad·s2/ft 3.1 × 10−4 rad·s2/ft

Rotor collective gain for flare and landing phases

TAU 0.05 s 0.05 s

Rotor collective adjustment time constant tuning parameter for flare and landing
phases

FAST_COL_INCREASE 15 ◦/s 10 ◦/s

Collective adjustment rate for rapid adjustments during the flare and landing phases

LANDING_MAX_ANGLE 8◦ 10◦

Maximum cap on roll and pitch angles during the landing phase

TOUCHDOWN_MAX_ANGLE 1◦ 3◦

Maximum cap on roll and pitch angles during the touchdown phase

TOUCHDOWN_COL_DECREASE −1 ◦/s −1 ◦/s

Constant collective pitch rate during touchdown phase

8



state estimate
Autorotation
Control Law

∫
Velocity
Tracking

Controller*


θ0
θ1s
θ1c
θtr



θ̇0

[
udes
ηmax

]
 θ1s
θ1c
θtr



Figure 2.1: High Level Control Architecture. The autorotation control law deter-
mines θ0 while the velocity tracking controller determines the cyclic and tail rotor
commands with input from the autorotation control law. *The velocity tracking
controller could be replaced with a landing site seeking controller.

2.1 Descent Phases

The autorotation descent is divided into five phases based on the altitude, h, and

the predicted time to impact assuming constant vertical velocity, TTIḧ=0 ≡ −h/ḣ.

This is similar to the approach for autorotation taken by Abbeel [6], and Livchitz et

al. also use a fuzzy partition of flight phases in their landing controller for small fixed

wing aircraft [12]. The names of the control phases are steady state descent, pre-flare,

flare, landing, and touchdown. Figure 2.2 shows the definition of the phases using

transition values for the Bell AH-1G Cobra that was used for simulation validation.

The altitude and time to impact domains are divided into a strict fuzzy partition

using trapezoidal membership functions. The values of the transition boundaries for

the AH-1G are given in Table 2.2. Note that there is an “OR” relationship between

the altitude and time to impact phase definitions; i.e. the controller will begin to

advance to the Flare phase if it is below the Flare upper boundary altitude or if the

predicted time to impact is less than the upper boundary time to impact. Also, the

controller is implemented so that it progresses through the phases sequentially; i.e.

once the controller is in the flare phase, it cannot return to the pre-flare phase, even if

the altitude increases. This is observed in the simulation results in Figure 4.4 where
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Figure 2.2: Descent Phase Diagram for the Bell AH-1G Controller. A logarithmic
scale is used on the altitude axis because the Landing and Touchdown phases are
defined at very low altitudes, and the gradual transitions are more apparent when a
log scale is used. Note that since the helicopter slows drastically at lower altitudes,
the phases are more evenly distributed over the time to impact domain, and thus a
log scale is not used.

the distribution of authority between the control laws corresponding to different

phases remains constant for a short time as the helicopter ceases to progress forward

through the phases. This prohibition on backwards progression through the phases

means that there is not necessarily a unique mapping from the physical state of

the helicopter at a given time to a control output. Instead, the control output

also depends on the internal controller state or equivalently the time history of the

helicopter physical state. In the following subsections, the control laws for each phase

are described.
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Table 2.2: Flight Phase Fuzzy Transitions for the AH-1G Cobra Helicopter. Since
trapezoidal membership functions are used, trasitions are linear.

Transition Altitude Range (ft) Time to Impact Range (s)

Steady State Descent to Pre-Flare 100 to 150 5 to 7
Pre-Flare to Flare 20 to 50 3 to 3.5
Flare to Landing 3 to 12 0.5 to 1.2
Landing to Touchdown 0 to 2 0 to 0.1

2.2 Steady State Descent

In the steady state descent phase, the controller seeks to maintain a constant

rotor rotation rate near the normal operating rate while the helicopter maneuvers

to a suitable landing site. Since a path planning algorithm that computes feasible

paths to a landing site is outside the scope of this paper, the controller currently

simply tries to match a forward speed U_AUTO specified by the control law designer.

The following equations define the control output in this phase:

udes = U_AUTO

ηmax = limited only by velocity tracking controller

θ̇0 = K_D_SS Ω̇ + K_P_SS(Ω − RPM_AUTO)

(2.1)

The steady state descent forward speed, U_AUTO, should ideally be the forward

speed at which the required power in steady-state forward flight is minimized [1].

Generally this is near the recommended forward speed for autorotation given in

the flight manual for a manned helicopter. Operating near this speed will ensure

a slow descent rate. RPM_AUTO can be set to the normal operating rotor rotation

rate, or an increased value if more energy is desired for flare as long as the value is

not above structural limits. The derivative of collective pitch, θ̇0, is governed by a

simple PD controller which drives collective toward a value corresponding to trimmed

11



autorotation. This is equivalent to governing θ0 itself using a PI controller. The gains

K_D_SS and K_P_SS can be chosen to yield reasonable response using simplified or high-

fidelity dynamic flight simulation. In general, if gains are chosen appropriately, this

control law will be stable in the normal operating region where the steady state rotor

rotation rate will decrease if θ0 increases, that is ∂ΩSS/∂θ0 > 0. For some model

size aerobatic helicopters, there is a region of large negative θ0 where a decrease in

collective will decrease the steady state rotation rate, that is ∂ΩSS/∂θ0 < 0. In this

region, the controller will fail. For this reason care must be taken to make sure that

K_D_SS is large enough so that θ0 does not overshoot the target value corresponding

to RPM_AUTO by too large a margin, or an additional control constraint must be

introduced to prevent this.

The steady state control law is designed to maintain an appropriate rotor rota-

tional rate regardless of the forward speed of the helicopter or maneuvers used to

reach a safe landing site. This makes it suitable for use with a pilot controlling the

cyclic pitch or integration with an algorithm designed to find a suitable landing site.

Simulation tests have shown that the controller is able to adjust θ0 to suit a range

of steady state forward speeds.

2.3 Pre-Flare

During the pre-flare phase, the controller attempts to bring the helicopter state

into the subspace that will likely result in a successful flare. The pre-flare controller

is identical to the steady state descent controller except that it instructs the velocity

tracking controller to limit its maneuvers to a small roll or pitch angle (η) so that it

is not attempting drastic maneuvers when entering the Flare phase. The following
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equations define control output in this phase:

udes = U_AUTO

ηmax = PRE_FLARE_MAX_ANGLE

θ̇0 = K_D_SS Ω̇ + K_P_SS(Ω − RPM_AUTO)

(2.2)

2.4 Flare

The Flare phase is the most critical part of the autorotation maneuver and proper

timing is vital. The goal of the flare phase is to reduce the vertical and horizontal

velocities to values suitable for safe entry into the landing phase. The velocity track-

ing controller is instructed to bring the helicopter to the small translational velocity

value desired for landing, U_TOUCHDOWN, as fast as possible and is allowed to use any

maneuver (η is not limited) to do so.

udes = U_TOUCHDOWN

ηmax = limited only by velocity tracking controller

(2.3)

The remaining task for the collective controller is to determine and track a ver-

tical trajectory that will cause the helicopter to enter the landing phase at the same

time that the speed tracking controller reaches the desired speed. Determining a fea-

sible flare trajectory is noted as a challenge in the literature. For example, Abbeel

et al. assert that “helicopter dynamics are very complex and this makes it difficult

(if not impossible) to hand-specify a trajectory that (even approximately) obeys the

dynamics” [6]. Their response to this challenge is to use data from actual autoro-

tations performed by a human pilot to determine a feasible trajectory. While this
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Table 2.3: Time to impact variables and parameters used in the flare control law.
Values for the variables during a sample simulation are shown in Figure 4.5

Variable: TTIḧ=0 (horizontal axis in Fig. 2.2)

Physical Meaning: Estimated Time To Impact assuming speed remains constant
Source: Calculated based on measured helicopter state
Use: Determining which phase the helicopter is in

Variable: TTI_L

Physical Meaning: Desired Time To Impact during the Landing phase
Source: Tunable control law parameter
Use: Landing phase control law and determining TTIF

Variable: TTLE

Physical Meaning: Desired Time To Landing phase Entry
Source: Determined by algorithm in Blocks 2.1-2.4
Use: Determines TTIF

Variable: TTIF

Physical Meaning: Desired Time To Impact during the Flare phase
Source: TTIF ≡ TTI_L + TTLE
Use: Flare phase control law

strategy is remarkably successful, it requires the capture of training data and the

associated data reduction and analysis for each specific vehicle under consideration.

Instead of attempting to directly specify a feasible trajectory in the space of the

helicopter’s physical state, we transform the problem to a new domain that lends

itself to a heuristic reasoning approach to generating a trajectory. The new domain

used for the predictive heuristic reasoning will be referred to as the time to impact

domain. Four important variables on the time to impact domain are used by the

controller. The meaning, source, and use of each are briefly described in Table 2.3.

With the introduction of the time to impact domain, the tasks of the flare phase

controller are to a) determine a suitable value for TTLE (defined in Table 2.3) using
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simple heuristic rules (described in Sections 2.4.1 and 2.4.2) and b) apply control

inputs to the helicopter that will put it on a trajectory to enter the landing phase

approximately TTLE seconds in the future (described in Section 2.4.3).

The logical development of the algorithm that estimates TTLE follows a sequence

that is rather different from the implementation of the algorithm, so two separate

descriptions are given here. First, a less formal discussion of the reasoning that forms

the basis for the algorithm is given in Section 2.4.1, then Blocks 2.1-2.4 show the

actual implementation of the algorithm in Section 2.4.2.

2.4.1 Logical development of the algorithm that determines TTLE

This section presents the reasoning that serves as the foundation for the TTLE

algorithm. The description begins with the basic notion of how TTLE is determined,

and then describes the constraints required to make the value of TTLE suitable for

all conditions.

The time required to decelerate horizontally is estimated by dividing the differ-

ence between the current forward speed, ẋ, and the desired speed at landing phase

entry, U_TOUCHDOWN, by the horizontal acceleration, ẍ. Similarly, the time required

to decelerate vertically is the difference between the current vertical velocity, ḣ,

and the desired value at landing entry, ḣLE, divided by the vertical acceleration,

ḧ. The exact implementation of these two calculations is shown in Section 2.4.2 in

Blocks 2.2 and 2.3. ḣLE is automatically inferred from other parameters according

to the relationship ḣLE ≡ hLE/TTI_L where hLE is defined as the altitude midway

through the transition between flare and landing phases. Thus, the basis for the

heuristic determination of TTLE is the following equation:

TTLE = max

(
ḣLE − ḣ

ḧ
,
U_TOUCHDOWN− ẋ

ẍ

)
(2.4)
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TTLE is an estimate of the amount of time it will take to slow to an acceptable

speed in both the vertical and horizontal directions. The actual value of TTLE

is related to TTLE, but there several additional rules and constraints in place to

handle cases in which TTLE is not an accurate estimate of the time required to

decelerate.

First, if either ḧ or ẍ has the wrong sign, it means that the physical state of

the helicopter is moving away from the desired state. If Equation 2.4 were used

directly in this case, TTLE would be negative and thus would not accurately reflect

the amount of time required to decelerate. In this case, TTLE is set to a maximum

value, TTLEmax. This value is based on user-selectable parameters (see Equation 2.6

for definition). Also, if the accelerations have the correct sign but are small enough

to make TTLE very large, TTLE is capped at TTLEmax. These rules are shown

implemented in Blocks 2.2 and 2.3 on page 18. They enforce the following constraints:

TTLE ≥ 0

TTLE ≤ TTLEmax

(2.5)

Second, According to Equation 2.4, if the actual helicopter velocity is near the

desired velocity, but the acceleration is small, the value of TTLE will still be large.

This is not the desired behavior. When the helicopter has reached a velocity near

the desired velocity, it should enter the landing phase regardless of the acceleration.

In order to produce this behavior, a fuzzy set of small velocities is defined. When

both of the components of velocity lie within this set, TTLE is set to zero (see

Blocks 2.2 and 2.3 on page 18 for clarification on how this is implemented). The

set is defined by the membership µsmall, which is a trapezoidal membership with a

support of (−6 ft/s, 6 ft/s) and shoulders at ±2 ft/s.
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Finally, the amount of energy available to the helicopter must be taken into

account. When the helicopter is autorotating from an initial state within the “avoid”

region of the H-V curve, the rotor speed and forward velocity may be too low to allow

a normal flare to take place. Instead, the helicopter will be forced to rapidly increase

collective very late in the descent and land with whatever horizontal velocity it

has. In other words, landing with a small vertical velocity is the highest priority;

landing with a low horizontal velocity is a secondary consideration. The kinetic

energy available to control the descent, KEavailable, is estimated by summing the

kinetic energy due to forward velocity and rotor rotation. This is compared to the

kinetic energy that would be available for control in a nearly ideal autorotation that

matches the desired controller parameters, KEideal. TTLEmax is adjusted so that if

KEavailable ≤ 1/2KEideal, TTLE is zero.

TTLEmax ≡ min

(
1,

2KEavailable
KEideal

− 1

)
(TTI_F_MAX− TTI_L) (2.6)

A more detailed implementation description of this rule is given in Block 2.1 on

page 18.

2.4.2 Implementation of the TTLE estimator

The following blocks show the implementation of the TTLE estimator based

on the rationale in the previous section. Each block shows a small portion of the

algorithm. The statements within the block are executed in order to produce the

output. The complete algorithm is formed when the inputs and outputs are linked

together. First, Block 2.1 shows the calculation of the energy based limit on TTLE,

then Blocks 2.2 and 2.3 show calculation of the vertical and horizontal components
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KEideal =
1

2
m(U_AUTO)2 +

1

2
IR(RPM_AUTO)2

KEavailable =
1

2
mu2 +

1

2
IRΩ2

TTLEmax = (TTI_F_MAX− TTI_L)

TTLEmax = min

(
1,

2KEavailable
KEideal

− 1

)
TTLEmax

state TTLEmax

Block 2.1: Energy adjustment of the maximum limit on TTLE

of TTLE, and finally Block 2.4 shows the combination of these values to produce

TTLE and TTIF .

TTLEh =
ḣLE − ḣ

ḧ
if ḣ > ḣLE then

TTLEh = 0
end if
if TTLEh < 0 or TTLEh > TTLEmax
then

TTLEh = TTLEmax
end if

TTLEh =
(

1 − µsmall(ḣ− ḣLE)
)
TTLEh

state

TTLEmax

TTLEh

Block 2.2: The vertical speed contribution to TTLE
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TTLEx =
U_TOUCHDOWN− ẋ

ẍ
if TTLEx < 0 or TTLEx > TTLEmax
then

TTLEx = TTLEmax
end if

TTLEx = (1 − µsmall(ẋ− U_TOUCHDOWN))TTLEx

state

TTLEmax

TTLEx

Block 2.3: The horizontal speed contribution to TTLE

max

TTLEh

TTLEx

sum

TTI_L

TTIF
TTLE

Block 2.4: Calculation of TTLE and TTIF
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2.4.3 Flare trajectory tracking

Now that the desired time to impact required for deceleration, TTIF , has been

calculated, a vertical trajectory can be generated and tracked. If the Helicopter is

modeled as a point mass and maintains a constant vertical acceleration ḧ(t) starting

at time t, then the altitude at time t+ TTIF will be

h(t+ TTIF ) = h(t) + ḣ(t)TTIF +
1

2
ḧ(t)TTI2F (2.7)

Under some conditions, solving this expression with h(t + TTIF ) = 0 will yield a

vertical trajectory for impact at time t + TTIF . Given the altitude h and altitude

rate ḣ, if the condition

TTIF ≤ −2h

ḣ
(2.8)

holds, then the constant acceleration

ḧdes = − 2

TTI2F
h− 2

TTIF
ḣ (2.9)

will bring the helicopter to the ground at time t + TTIF . If the condition in (2.8)

does not hold, then there is no constant acceleration that will cause an impact at

time t+ TTIF .

The value of the collective pitch corresponding to ḧdes is unknown and highly

dependent upon difficult-to-observe components of the state of the helicopter such

as inflow. However, in order to define a simple control law, consider the crude linear

approximation

ḧ =
θ0
Kθ0

(2.10)
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The controller should drive θ0 towards the (unknown) value required to produce

ḧdes, so the control law

θ̇0 =
K_COL

TAU
(ḧdes − ḧ) (2.11)

is adopted, where K_COL is chosen to be near the value of Kθ0 . This control law is

analogous to the action that a human pilot would take when controlling a system

where the trim control value is unknown. The control is adjusted in the direction of

the desired result until the desired result is achieved. K_COL and TAU are redundant

control parameters, but both are very useful for understanding the system and tuning

the controller. Since Kθ0 can be crudely approximated using (2.10) and blade element

theory, K_COL can be fixed at K_COL ≈ Kθ0 , and TAU, which represents the time

constant of the system described in Equations 2.10 and 2.11, can be used to adjust

the speed of the control response.1

If the condition in Equation 2.8 is not met, Equation 2.9 calculates the accel-

eration required to cross the ground plane on the upward stroke of the parabola

defined in Equation 2.7. If this trajectory were followed, the helicopter would im-

pact the ground at a time significantly before t + TTIF . In order to prevent this,

if the condition in Equation 2.8 is violated, the Flare controller commands a large

upward adjustment (FAST_COL_INCREASE) of the collective pitch. This is analogous to

a human pilot realizing that the magnitude of the vertical velocity is too large and,

in response, rapidly increasing the collective pitch until the velocity has reached a

manageable value.

1The reader may notice that Equations 2.9, 2.10, and 2.11 form a third order linear system
describing the evolution of h (ignoring the condition in Equation 2.8). For positive values of TAU,
the eigenvalues of this system are in the left half plane and two are complex. Thus, the system
would naturally oscillate about h = 0, driving the helicopter through the ground. This hints at the
importance of the condition in Equation 2.8, but since the condition is in place and TTIF is not
constant, the linear analysis offers little further insight.
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Block 2.5 shows the implementation of the portion of the control law described

in this section. Combining this block with Blocks 2.1-2.4 and Equation 2.3 creates a

complete description of the flare control law.

if −2h/ḣ ≥ TTIF then

ḧdes = − 2
TTI2F

h− 2
TTIF

ḣ

θ̇0 = K_COL
TAU (ḧdes − ḧ)

else

θ̇0 = FAST_COL_INCREASE

end if

state

TTIF

θ̇0

Block 2.5: Flare collective control law

2.4.4 Concluding remarks regarding the flare controller

The preceding description of the flare control law is lengthy, and, at first reading,

may seem complicated. However, the basic approach is simple. The flare controller

must first estimate how long it will take for the velocity tracking controller to com-

plete the flare while also taking energy constraints into accounts. Then the flare

controller must determine a collective command sequence to bring the helicopter

to the landing phase in approximately that amount of time. The specific low-level

methods outlined here are not the only potential solutions; using a different but ap-

proximately functionally equivalent method for calculating TTLE or θ̇0 would likely

result in another acceptable control law. The high-level concept of using approxi-

mate reasoning in the time to impact domain just as a human pilot might do is the

most important feature of the control law and its fundamental innovation.
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2.5 Landing

In the Landing phase, the controller seeks to bring the helicopter to the ground

gently with nearly level attitude. The control law is similar to the Flare phase

control law (it is derived from Equations 2.9 and 2.11), except that the desired time

to impact remains constant, equal to the controller parameter TTI_L. For the full

sized helicopter used for simulation, a suitable value for TTI_L proved to be 1.5 s.

udes = U_TOUCHDOWN

ηmax = LANDING_MAX_ANGLE

θ̇0 =


K_COL
TAU

(
−2(h+ḣTTI_L)

TTI_L2 − ḧ
)

if − 2h
ḣ
≥ TTI_L

FAST_COL_INCREASE else

(2.12)

2.6 Touchdown

The touchdown phase brings the helicopter to rest on the ground by decreasing the

collective slowly and attempting to maintain a level orientation. For large helicopters,

limits on the control inputs may need to be implemented in this phase to keep

the blades from impacting the empennage after touchdown due to the very low

rotational rate of the rotor. Note that these limits have not been included here but

could be easily implemented and would be highly dependent on the vehicle under

consideration.The following equations describe control parameters during this phase:

udes = U_TOUCHDOWN

ηmax = TOUCHDOWN_MAX_ANGLE

θ̇0 = TOUCHCOWN_COL_DECREASE

(2.13)
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2.7 A Velocity Tracking Controller Reference Implementation

A simple velocity tracking controller was implemented as a reference example and

for the sake of conducting simulations. In a commercial or military implementation,

the velocity tracking controller would likely be the controller designed for powered

flight of the particular helicopter or may be replaced by a more complex controller

designed to automatically find a suitable landing site. This reference controller uses

a simple two-tiered proportional derivative (PD) architecture shown below in Fig-

ure 2.3. The outer loop recommends an orientation ([φcmd, θcmd, ψcmd]
T ) based on

udes and the current helicopter velocity. The inner loop attempts to match this

orientation using the cyclic and tail rotor controls ([θ1s, θ1c, θtr]
T ).

[
udes

vdes ≡ 0

]
Velocity PD
Controller

φ2
cmd + θ2cmd
≤ ηmax

Orientation
PD Controller

 θ1s
θ1c
θtr



[
u
v

]  φ
θ
ψ



ψcmd ≡ 0

+

[
φcmd
θcmd

]
+

- -

Figure 2.3: Reference Velocity Tracking Controller
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3. SIMULATION MODEL

A high-fidelity helicopter simulation model was created in order to validate the

proposed control law. This simulation software was also used for flight dynamics

research in Reference [13], and thus received limited flight test validation through

that project. Fuselage, horizontal stabilizer, vertical stabilizer, and tail rotor forces

and moments are computed based on the ARMCOP model developed by Talbot and

Chen [14, 15, 16]. The main rotor model, however, provides higher fidelity than that

used in ARMCOP, incorporating dynamic inflow, ground effect, and blade stall. Each

of the following subsections describe a component of the helicopter model. Detailed

descriptions of each model component are beyond the scope of this paper but can be

found in the cited references.

3.1 Tail Rotor, Fuselage, Stabilizers

The fuselage, horizontal and vertical stabilizer, and tail rotor components of the

helicopter model are implemented as described in Reference [14]. The tail rotor uses

Newton-Raphson iteration to calculate uniform tail rotor inflow. Its blade flapping

model is quasi-steady state. That is, the blade flapping dynamic equations (Equa-

tion 3.2 on page 27) are solved for steady state (β̈ = β̇ = 0) at the current conditions

because the flapping dynamics for the tail rotor are fast enough to be neglected for

control and handling qualities research [14]. Other components have rudimentary

aerodynamic models which introduce forces and moments affecting the motion of

the helicopter.
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3.2 Forces and Moments Generated by the Main Rotor

The forces and moments generated by the main rotor are calculated using a

numerical blade element approach. The main rotor blade is divided into 15 blade

elements and 2D aerodynamic analysis is performed for each. The velocity of the

air due to the motion of the helicopter and the induced inflow is calculated at each

blade element. Based on this velocity, the forces on the blade element are calculated

using a lift and drag coefficient look up table for the specific airfoil under consider-

ation [17]. This calculation for a representative blade is carried out at 30 rotational

stations evenly distributed over a complete revolution. The results are summed and

appropriately normalized according to the number of blades and rotation stations.

This numerical calculation is used to obtain the aerodynamic forces exerted by the

entire rotor on the vehicle. Blade loads determined by these calculations, resolved

as the main rotor torque, are used to determine the rotor rotation rate derivative, Ω̇,

when the engine is not powering the vehicle. In addition to the forces and moments

exerted on the helicopter, these calculations determine the vector of aerodynamic

force and moment coefficients, C, needed in the dynamic inflow model.

Since the airfoil look up table contains wind tunnel data for angles of attack

through 180◦, simple stall behavior is also implicitly included in the model. That is,

if the blade has a very large angle of attack, as is the case for the retreating blade

in forward flight, the lift and drag coefficients extracted from the table will reflect

stall. There is, however, no Reynolds number correction, and small-scale unsteady

aerodynamic effects are not modeled, so the stall behavior is not completely accurate.

Compressibility effects are ignored.
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3.3 Blade Flapping

First harmonic flapping is assumed and higher-harmonic flapping dynamics are

neglected for these control law studies. First harmonic blade flapping states β0, β1s,

β1c, and their time derivatives are integrated into the model as states. The flapping

angle at any point in the rotation is given by

β(ψMR) = β0 − β1c cos(ψMR) − β1s sin(ψMR) (3.1)

where a positive β represents downward flapping.

The differential equation that governs flapping is given by

β̈ + ω2
Nβ = MF (3.2)

where

ωN = Ω

√
IB + meR

2

IB
(3.3)

In Equation 3.3, m is the blade mass, R is the blade radius, e is the flap hinge

offset, and IB represents the blade flap-wise inertia. MF in Equation 3.2 includes

all aerodynamic loads calculated through blade element theory and inertial moments

as described in References [15] and [16], which are too lengthy to be provided here.

The flapping differential equation is solved using a harmonic balancing approach in

which a first-harmonic solution is assumed and harmonic coefficients β0, β1s, and β1c
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are extracted through the following projection operation:

∫ 2π

0

(
β̈ + ω2

Nβ −MF

)
dψMR = 0 (3.4)∫ 2π

0

(
β̈ + ω2

Nβ −MF

)
cosψMR dψMR = 0 (3.5)∫ 2π

0

(
β̈ + ω2

Nβ −MF

)
sinψMR dψMR = 0 (3.6)

Solution of Equations 3.4-3.6 yields second order differential equations for each

of the three flapping states β0, β1s, and β1c. The forces that are used in the flapping

equations are calculated using simplified analytical expressions for the flapping mo-

ments on the blades that are independent from the blade element force calculations

described in Section 3.2

3.4 Dynamic Inflow

The dynamic inflow model used in this work is described by Peters and HaQuang [18].

It is based on the Pitt and Peters model [19], which has been validated using ex-

perimental data and is widely used [20]. The model has three states, λ0, λs, and λc

which describe the induced inflow ratio distribution over the rotor disk according to

the equation

λi(r, ψMR) = λ0 + λs
r

R
sinψMR + λc

r

R
cosψMR (3.7)

These states evolve according to the dynamic equation

[M ]


λ̇0

λ̇s

λ̇c

+ [L̂]−1


λ0

λs

λc

 = C (3.8)
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where C is a vector of force and moment coefficients calculated using the blade

element approach described in Section 3.2 above, [L̂] is a matrix dependent on the

sideslip angle and wake angle, and [M ] is a mass term based on the mass of air near

the rotor. Additional details regarding this model can be found in Reference [18].

3.5 Ground Effect

A simple ground effect correction is applied to the dynamic inflow model when

the rotor is near the ground. Equation 3.8 shows that when the inflow has reached

a steady state (i.e. λ̇ = 0),

C = [L̂]−1λss (3.9)

where λss is the vector of the inflow states at steady state. We assume that in

ground effect the steady state inflow can be modeled by

λssIGE =

(
1 − ∆w

w0

)
λss (3.10)

where ∆w/w0 is a correction term for ground effect in forward flight described

by Heyson [21]. This is applied in the dynamic inflow model by adjusting C so that

λ tends towards λssIGE. At steady state,

CIGE = [L̂]−1λssIGE (3.11)

= [L̂]−1

(
1 − ∆w

w0

)
λssIGE (3.12)

= [L̂]−1[L̂]

(
1 − ∆w

w0

)
C (3.13)

CIGE =

(
1 − ∆w

w0

)
C (3.14)
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In the dynamic equation (3.8), C is adjusted using Equation 3.14 when the main

rotor is within two rotor diameters of the ground:

[M ]


λ̇0

λ̇s

λ̇c

+ [L̂]−1


λ0

λs

λc

 =

(
1 − ∆w

w0

)
C (3.15)

The values for ∆w/w0 are taken from a lookup table based on Figure 3.1, taken

from Reference [21]. This data is based on theory that has been experimentally

verified. The data is indexed based on the height above ground and the wake angle

determined from the inflow state and velocity of the helicopter.

Figure 3.1: Ground Effect Correction (Taken from Reference [21])

3.6 Actuators

The simulated control actuators are limited to a maximum rate and have maxi-

mum and minimum stops. Therefore, the actual control value differs from the com-
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manded control value depending on how fast changes are applied. The actuators

respond as quickly as possible without exceeding the maximum rate. The behavior

for a control input updated at 20 Hz and an actuator limited to 40 ◦/s response is

illustrated in Figure 3.2.
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Figure 3.2: Sample Actuator Response

The simulation software models each control (θ0, θ1s, θ1c, and θtr) as if it had

its own dedicated actuator, so the complex rate and limit interactions between the

actuators connected to the swash plate are not modeled. For complete accuracy,

these would need to be modeled on a vehicle-specific basis, but, in general, actuator

lag is included in the model through this rate-limiting scheme.
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3.7 Simulation Overview

The summed forces (Fx, Fy, and Fz) and moments (Mx, My, and Mz) generated

by the model components described in Sections 3.1 and 3.2 are used to drive the

rigid body equations of motion which govern the position of the mass center (x, y,

and z) and the orientation of the body with respect to an inertial frame. Orientation

is represented by a 3-2-1 Euler angle rotation sequence through ψ, θ, and φ. The

velocities and angular rates in the body frame are u, v, w, p, q, and r. The rigid

body equations of motion below use the shorthand notation c(·) for cos(·) and s(·) for

sin(·)


ẋ

ẏ

ż

 =


cθcψ sφsθcψ − cφsψ cφsθcψ + sφsψ

cθsψ sφsθsψ + cφcψ cφsθsψ − sφcψ

−sθ sφcθ cφcθ



u

v

w

 (3.16)


φ̇

θ̇

ψ̇

 =
1

cθ


cθ sφsθ cφsθ

0 cφcθ −sφcθ

0 sφ cφ



p

q

r

 (3.17)


u̇

v̇

ẇ

 =
1

m


Fx

Fy

Fz

−


0 −r q

r 0 −p

−q p 0



u

v

w

 (3.18)


ṗ

q̇

ṙ

 = [Ic]
−1
B




Mx

My

Mz

−


0 −r q

r 0 −p

−q p 0

 [Ic]B


p

q

r


 (3.19)
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The complete system state including the states of all components contains the

following 22 elements:

state =
[
x, y, z, φ, θ, ψ, u, v, w, p, q, r,Ω, β0, β1s, β1c, β̇0, ˙β1s, ˙β1c, λ0, λs, λc

]
(3.20)

This state is integrated using the fourth order Runga-Kutta method with a

timestep of 0.001 seconds.
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4. SIMULATION RESULTS

A large number of Monte-Carlo simulations were run to provide preliminary val-

idation of the controller. Similar tests were conducted for both the AH-1G full size

attack helicopter (Section 4.1) and the small Align TREX 600 remote control model

helicopter (Section 4.2).

4.1 Bell AH-1G Cobra Simulations

The model used in these tests is based on the Bell AH-1G Cobra attack helicopter.

Most of the model parameters were obtained from Reference [14]. Table 4.1 lists

some of the important model parameters. Recall that Table 2.1 lists the controller

parameters used for these tests.

Figures 4.1 and 4.2 show the time histories of the states of a helicopter performing

an autorotation descent from an altitude of 350 ft and a forward speed of 50 knots.

This initial state is near the edge of the avoid region of the H-V diagram, but the

controller handles the maneuver well, bringing the vehicle to a safe landing. A 1 sec-

ond delay between engine shutoff and the point at which the autorotation controller

takes over from the normal flight controller is simulated, potentially representing

the actual time it would take to confirm power loss and initiate the autorotation

controller.

There are a variety of notable features in these plots. First, note the immediate

drop in rotor rotation rate Ω before the autorotation controller takes effect followed

by the return of Ω to a value slightly higher than the normal operating value during

steady state descent. Next, note that the vehicle achieves the desired forward speed

for minimum descent rate, given as 100 ft/s for this helicopter. Also note the decrease
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Table 4.1: Bell AH-1G Model Parameters Pertaining to Autorotation

Parameter Symbol Value

Helicopter gross weight W 8300 lb
Number of main rotor blades Nb 2 (Teetering)
Main rotor blade chord c 2.25 ft
Main rotor radius R 22 ft
Main rotor blade moment of inertia IB 2770 slug ft2

Main rotor height above ground (water line) WLMR 12.73 ft
Main rotor normal operating speed Ωnormal 32.88 rad/s
Main rotor blade airfoil used for simulation NACA 0012

Actuator max rate δ̇max 40 deg/s
Controller update rate 20 Hz

in the induced velocity (λ0) as the helicopter approaches the ground due to ground

effect. Finally, note that at landing all velocities and orientation angles are small

indicating a safe touchdown.

Figures 4.3-4.5 show some important controller internal states and outputs. Fig-

ure 4.3 shows the control outputs for the sample autorotation. Note the sharp

peaks in θ0 near the end of the dataset. These peaks indicate violations of the

TTIF ≤ −2h/ḣ condition in the control law. When this occurs, the controller rapidly

increases θ0 as described in Section 2.4. Though these peaks appear dramatic, the

amplitude is less than 2◦ for the largest, and the frequency is not more than 2 Hz.

Monte Carlo simulations were conducted in and around the “avoid” region of the

H-V diagram to demonstrate that the controller is able to recover from difficult ini-

tial conditions and significantly increase the envelope of safe flight. One important

factor in determining the likelihood of a successful autorotation is the time between

engine, transmission, or tail rotor failure and the beginning of autorotation-friendly
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Figure 4.1: Helicopter Position, Orientation, Velocity, and Angular Rate State His-
tories for a Sample AH-1G Cobra Autorotation Simulation (see Figure 4.2 for main
rotor states)

36



0 2 4 6 8 10 12 14 16 18 20
26

28

30

32

34

36

38
Ω (rad/s)

Time (s)

0 5 10 15 20
−15

−10

−5

0

5

10

Time (s)

β
1c

 (deg)

0 5 10 15 20
−8

−6

−4

−2

0

2

4

Time (s)

β
1s

 (deg)

0 5 10 15 20
−80

−60

−40

−20

0

20

40

Time (s)

β
1c

dot (deg/s)

0 5 10 15 20
−60

−40

−20

0

20

40

Time (s)

β
1s

dot (deg/s)

0 5 10 15 20
0.01

0.02

0.03

0.04

0.05

Time (s)

λ
0

0 5 10 15 20
0

0.01

0.02

0.03

0.04

0.05

Time (s)

λ
c

0 5 10 15 20
−6

−4

−2

0

2

4

6
x 10

−3

Time (s)

λ
s

Figure 4.2: Helicopter Main Rotor State Histories for a Sample AH-1G Cobra Au-
torotation Simulation
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Figure 4.3: Control Histories for a Sample AH-1G Autorotation Simulation. Note
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position.

38



0 2 4 6 8 10 12 14 16 18 20
0

0.2

0.4

0.6

0.8

1

Time from Engine Stop (s)

P
ha

se
 C

on
tr

ol
le

r 
A

ut
ho

rit
y 

V
al

ue

Phase Control Authority Time History

 

 

Steady State Descent
Pre−Flare
Flare
Landing
Touchdown

Figure 4.4: Phase Control Authority Time History. This plot shows which phase
controllers have authority during different portions of the landing. A value of 1
denotes complete authority

0 2 4 6 8 10 12 14 16 18 20
0

1

2

3

4

5

6

7

8

9

10
Time To Impact

Time from Engine Stop (s)

T
im

e 
to

 Im
pa

ct
 (

s)

 

 
Constant Velocity TTI (calculated)
TTI

F
 (desired)

TTI_L (desired, controller parameter)
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maneuvers by the pilot or control system. In an emergency, even an autonomous

system might require some time to detect the failure and hand off control to the

autorotation control law. Human pilots are typically expected to react to an emer-

gency in 1-2 seconds depending on pilot workload [1], so simulations are conducted

assuming immediate handoff, a handoff delayed by 1 second, and a handoff delayed

by 2 seconds.

Figure 4.6a shows the results of 1000 simulated autorotation landings with an

immediate handoff. Each solid dot represents a successful landing from the indicated

position. A diamond indicates a landing that would likely result in damage to the

vehicle, but equipment or passengers would not be in serious danger. An × indicates

a crash. The specific thresholds for each of these categories are listed in Table 4.2.

The low-speed “avoid” region of the H-V diagram for the Cobra helicopter is also

marked. This curve is taken from Reference [22]. Note that the controller is able to

perform a safe autorotation in nearly all cases, although some landings are not ideal.

Figure 4.6b shows the results of 1000 simulated autorotations with a handoff delayed

by 1 second, and Figure 4.6c shows the results for a handoff delayed by 2 seconds.

It is also interesting to consider a case in which vehicle is overweight, resulting in

degraded autorotation performance due to the increase in disk loading. Figure 4.6d

shows the results of 1000 simulated autorotations for an AH-1G with weight increased

to 9000 lb with a handoff delay of 1 second. The control law and all of its parameters

are identical to those used in previous tests.

In all tests, the controller generally has difficulty at low altitudes and high speeds.

This is typically a dangerous region of the height-velocity envelope since there is usu-

ally insufficient time to slow the helicopter to a safe speed before ground impact, and

insufficient altitude to establish a steady state descent. This pathology may warrant
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Figure 4.6: AH-1G Monte Carlo Simulation Results
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Table 4.2: Conditions for Good and Poor Landings for the AH-1G. Simulations that
do not meet these criteria are considered crashes. Conditions are applied to the
absolute value of the parameter unless otherwise noted.

Parameter Condition for Good Landing Condition for Poor Landing

Roll angle, φ < 10◦ < 20◦

Pitch angle, θ < 12◦ < 20◦

Forward Speed, ẋ < 30 knots < 60 knots
Lateral Speed, ẏ < 7 ft/s < 10 ft/s
Vertical Speed, ż < 5 ft/s < 12 ft/s
Roll Rate, p < 20 ◦/s < 40 ◦/s
Pitch Rate, q −30 ◦/s < q < 20 ◦/s −50 ◦/s < q < 40 ◦/s
Yaw Rate, r < 20 ◦/s < 40 ◦/s

adjustment to the control law in the future to better handle this case. Overall, the

Monte Carlo simulations presented here clearly demonstrate that the new control law

holds the potential to significantly expand the safe H-V envelope when compared to

a human pilot.

4.2 Align TREX 600 Simulations

The controller has also been applied to a model of the Align TREX 600 hobby-

class helicopter to demonstrate its scalability. This simulation model has the same

structure as the AH-1G model with different parameters, which are listed in Ta-

ble 4.3. The rotor hub on the TREX Helicopter is semi-rigid meaning that the

blades have pitch and lead-lag, but not flapping degrees of freedom. Blade flapping

for a helicopter with this configuration can be modeled using an equivalent offset

and hub spring [1]. Recent work [13] has suggested that a hinge offset of zero and

reasonably stiff hub spring best match the dynamics of this specific helicopter.

Figures 4.7-4.9 show the state and control histories of a sample autorotation for

the small helicopter. This simulation shows behavior that is similar in many ways
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Table 4.3: Align TREX 600 Model Parameters Pertaining to Autorotation

Parameter Symbol Value

Helicopter gross weight W 8.15 lb
Number of main rotor blades Nb 2 (fixed hub)
Main rotor blade chord c 0.1771 ft
Main rotor radius R 2.208 ft
Main rotor blade moment of inertia IB 0.01357 slug ft2

Main rotor height above ground (water line) WLMR 1.5 ft
Main rotor normal operating speed Ωnormal 162 rad/s
Main rotor blade airfoil used for simulation NACA 0012

Actuator max rate δ̇max 100 deg/s
Controller update rate 20 Hz

to the behavior of the larger helicopter. Figure 4.10 shows the histories of some

internal time-to-impact controller states. The handoff delay is 3 seconds. This delay

can clearly be seen in the θ0 history in Figure 4.9 as the control law attempts to

maintain altitude at the beginning of the autorotation.

The control histories show some high frequency oscillations in θ1s. These are

due to the stiff response of the helicopter caused by the rigid hub. There are also

oscillations or peaks in the collective control. These are due to the TTI ≤ −2h/ḣ

condition in the flare control law and interaction with the dependence of TTLE (and

therefore TTIF ) on vertical speed shown in Block 2.2. The oscillations in TTIF due

to this interaction are clearly visible in Figure 4.10. It should be noted that the

amplitude of these oscillations is small at less than 1◦.

Monte Carlo simulations were run on the TREX 600 model to demonstrate the

controller’s effectiveness in a wide variety of initial conditions. Landings are classified

according to the criteria listed in Table 4.4. The results are presented in Figure 4.11.

When the handoff delay is small, it is clear that the controller is able to handle a
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Figure 4.7: Helicopter Position, Orientation, Velocity, and Angular Rate State Histo-
ries for a Sample TREX 600 Autorotation Simulation (see Figure 4.8 for main rotor
states)
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Figure 4.8: Helicopter Main Rotor State Histories for a Sample TREX 600 Autoro-
tation Simulation
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Figure 4.9: Control Histories for a Sample TREX 600 Autorotation Simulation
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Figure 4.10: Controller Internal Time to Impact Variables for a Sample TREX 600
Autorotation. This plot shows the values of several internal controller states. Note
that TTLE can be read off the plot as the difference between TTIF and TTI_L

wide variety of initial conditions. As the handoff delay is increased, performance

becomes significantly worse because of the decrease in rotor RPM caused by the

controller attempting to maintain altitude before handoff. The controller is able to

handle a doubling of the aircraft’s weight without change when the initial altitude

is high, but it is unable to handle this change without parameter adjustment when

the initial altitude is low. These results clearly show that the controller is scalable

for use in small unmanned helicopters as well as large ones.
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Table 4.4: Conditions for Good and Poor Landings for the TREX 600. Simulations
that do not meet these criteria are considered crashes. Conditions are applied to the
absolute value of the parameter unless otherwise noted.

Parameter Condition for Good Landing Condition for Poor Landing

Roll angle, φ < 10◦ < 20◦

Pitch angle, θ < 12◦ < 20◦

Forward Speed, ẋ < 10 ft/s < 20 ft/s
Lateral Speed, ẏ < 5 ft/s < 10 ft/s
Vertical Speed, ż < 5 ft/s < 12 ft/s
Roll Rate, p < 20 ◦/s < 40 ◦/s
Pitch Rate, q −30 ◦/s < q < 20 ◦/s −50 ◦/s < q < 40 ◦/s
Yaw Rate, r < 20 ◦/s < 40 ◦/s
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(b) 1 sec handoff delay
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(c) 3 sec handoff delay
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Figure 4.11: TREX 600 Monte Carlo Simulation Results
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5. CONCLUSION

A new highly scalable expert system control law for autonomous autorotation

has been proposed and validated through simulation. This controller uses a blended

set of control laws to guide the helicopter through the phases of an autorotation.

One key innovation is the use of approximate reasoning based on the desired time to

impact during the flare phase. Monte Carlo simulations using a high fidelity model

of a full size helicopter clearly demonstrate that the controller has the potential to

expand the safe flight envelope for single engine rotorcraft. Simulations of a small

remote control helicopter indicate that the control law is scalable to a wide range of

sizes.
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