
SAFETY AND EFFICIENCY IN AUTONOMOUS VEHICLES

THROUGH PLANNING WITH UNCERTAINTY

A DISSERTATION

SUBMITTED TO THE DEPARTMENT OF AERONAUTICS AND

ASTRONAUTICS

AND THE COMMITTEE ON GRADUATE STUDIES

OF STANFORD UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

Zachary Nolan Sunberg

August 2018

Abstract

To be effective, autonomous air and ground vehicles should maintain safety while

accomplishing tasks efficiently in terms of time and other resources. Unfortunately,

the objectives of safety and efficiency are fundamentally opposed because safety pre-

cautions prohibit some efficient actions. Moreover, the presence of uncertainty about

the environment makes planning safe and efficient actions more difficult.

The Markov decision process (MDP) is a systematic framework for modelling se-

quential decision problems with outcome uncertainty, and the partially observable

Markov decision process (POMDP) adds the additional ability to model state un-

certainty. MDPs and POMDPs are suitable models for a wide range of situations

that an autonomous vehicle might face. However, obtaining the exact solution to a

general POMDP is an intractable problem. This thesis considers approximate MDP

and POMDP solutions and seeks to quantify their utility for autonomous vehicles.

Specifically, it contains four contributions.

First, the thesis analyzes the use of a certifiable safety constraint alongside approx-

imate optimization in the context of unmanned aerial vehicle collision avoidance. In

order to ensure safety, aerospace systems have particularly stringent certification re-

quirements that likely preclude approximate randomized planning techniques capable

of handling uncertainty. This work evaluates the performance price that comes with

using a simple certified policy and shows that MDP and POMDP optimization can

significantly reduce that price and improve both safety and efficiency simultaneously.

The second application chapter considers the effects of modeling uncertainty in a

difficult lane changing task for a self-driving car. Specifically, the research estimates

the value of planning with the internal states of other human drivers such as their

iv

intentions and dispositions. While several other researchers have used internal-state-

aware planning methods to interact with human drivers in desirable ways, they have

not evaluated whether these methods offer a substantial quantitative improvement

in performance over conventional approaches. This thesis shows that, in a simplified

simulated setting, planning with internal states using a POMDP formulation can

significantly improve both safety and efficiency simultaneously. Moreover, the thesis

describes an experimental method for investigating other cases in which internal-

state-aware planning may improve performance.

The benefits of POMDP planning can only be realized with algorithms that can

handle real-world domains that are continuous and irregular. To that end, the third

contribution of the thesis is a pair of new algorithms for solving POMDPs with con-

tinuous state, action, and observation spaces. These algorithms are motivated by

analysis and numerical experiments that show that leading online POMDP solvers

fail on continuous observation spaces because of the following two problems. First,

the large observation space causes policy trees to become too wide and not deep

enough. Second, the number of state particles used to represent beliefs collapses

to one, causing overconfidence. The new algorithms, POMCPOW and PFT-DPW,

handle these problems using progressive widening and weighted particle belief repre-

sentations. Numerical experiments show that they are able to solve problems where

previous methods fail.

The final contribution is a software package, POMDPs.jl, which uses the features

of the Julia programming language to bring state-of-the-art POMDP solution meth-

ods to bear on problems defined through an interface that provides convenience and

flexibility.

v

Acknowledgements

The biggest debt of gratitude that I owe to any single person for this thesis is to my

advisor, Mykel Kochenderfer. In my opinion, the most admirable thing about Mykel

is not the quality of work that he produces (though that is quite impressive), but his

commitment and care for students as researchers and people. I will always think of

his office as one of my favorite places of learning on campus. He took me on as a

student during a time of struggling in my research and helped me finish strong.

I also owe a great deal to Marco Pavone, who was my advisor for the first half of

this endeavor. Additionally, my thanks goes out to Dan DeBra, who brought me here

to Stanford, and Suman Chakravorty and Jon Rogers who were instrumental in my

early growth as a researcher at Texas A&M. I am also thankful to the other members

of my defense committee: Mac Schwager, Chris Gerdes, and Dorsa Sadigh.

A PhD is not a disembodied pursuit of knowledge, but a journey undertaken by

a human with a heart and soul and flaws and weaknesses. As such, I must thank

my community here at Stanford for their care of me as a human exploring God’s

creation. Grace Presbyterian church provided a place of connection and growth for

me, and my friends gave me constant support. In particular, two friends, Jeff Reid

and Daniel Galbraith, should be noted for their faithfulness over the entire time I was

here. Moreover, I certainly would not be here without my parents and sister and the

rest of my family and friends who have been shaping me for my entire life.

I was fortunate to be a part of two outstanding labs during my time here, the

Autonomous Systems Lab and the Stanford Intelligence Systems Lab, both of which

gave me comraderie and sharpened my technical skills. I’ll remember both the hard

work and fun that I had in these places.

vi

The work in this thesis would not have been possible without the generous financial

support that I received from a variety of sources including MIT Lincoln Laboratory,

the National Science Foundation, the U.S. Naval Research Laboratory, and Toyota

Resarch Institute. I must also recognize the leadership and staff of Stanford University

and the Aeronautics and Astronautics department. They have created a remarkable

environment for learning.

vii

Contents

Abstract iv

Acknowledgements vi

1 Introduction 1

1.1 Autonomous Vehicles . 1

1.1.1 Benefits of Autonomous Transportation 1

1.1.2 Current Progress . 3

1.1.3 Remaining Challenges . 3

1.2 Decision Making Under Uncertainty 5

1.2.1 Optimization objective . 5

1.2.2 Uncertainty in Decision Making 7

1.2.3 Markov Decision Processes . 9

1.2.4 Partially Observable Markov Decision Processes 10

1.2.5 Value Iteration . 11

1.2.6 Monte Carlo Tree Search . 12

1.2.7 Particle Filtering . 14

1.2.8 Approximate Solutions to POMDPs 15

1.2.9 QMDP . 17

1.3 Contributions and Outline . 18

2 Trusted and Optimized UAV Collision Avoidance 20

2.1 Collision Avoidance for UAVs . 20

2.2 MDP Models . 23

viii

2.2.1 Model Assumptions . 24

2.2.2 Vehicle States and Dynamics 25

2.2.3 Transition Function . 26

2.2.4 Reference Trusted Resolution Logic 27

2.2.5 Action Spaces and Control Systems 28

2.2.6 Reward . 30

2.2.7 Problem statement . 31

2.3 Solution Approach . 31

2.3.1 Approximate Value Iteration 32

2.3.2 Post Decision Value Function Extraction 34

2.3.3 Online Policy Evaluation . 36

2.3.4 Selection of Features . 36

2.4 Results . 40

2.4.1 Policies . 40

2.4.2 Numerical Performance Evaluation 42

2.5 Discussion . 46

3 Planning with Internal States in Driving 48

3.1 Human Interaction in Autonomous Driving 48

3.2 Freeway Driving POMDP . 50

3.2.1 Driver Modeling . 52

3.2.2 Physical Dynamics . 53

3.2.3 Action Space for Crash-Free Driving 55

3.2.4 Reward Function and Objectives 56

3.2.5 Initial Scenes . 57

3.3 Solution Approaches . 57

3.3.1 Approach 1: Assume normal behavior 57

3.3.2 Approach 2: Model all uncertainty as outcome uncertainty

(Naive MDP) . 57

3.3.3 Approach 3: Mean Model Predictive Control 58

3.3.4 Approach 4: QMDP . 59

ix

3.3.5 Approach 5: POMCPOW . 59

3.4 Results . 59

3.4.1 Driver Model Distribution Scenarios 60

3.4.2 Pareto Front Comparison . 63

3.4.3 Correlation comparison . 66

3.4.4 Robustness . 67

3.5 Discussion . 70

4 Online Algorithms for Continuous POMDPs 73

4.1 Background . 74

4.2 Algorithms . 75

4.2.1 POMCP-DPW . 76

4.2.2 PFT-DPW . 79

4.2.3 POMCPOW . 81

4.2.4 Discretization . 81

4.2.5 Observation Distribution Requirement 83

4.3 Experiments . 83

4.3.1 Laser Tag . 84

4.3.2 Light Dark . 84

4.3.3 Sub Hunt . 86

4.3.4 Van Der Pol Tag . 88

4.3.5 Multilane . 89

4.3.6 Discretization granularity . 89

4.3.7 Hyperparameters . 90

4.4 Discussion . 91

5 A Julia Framework for POMDPs 93

5.1 Challenges for POMDP-solving software 94

5.1.1 Speed . 94

5.1.2 Flexibility . 94

5.1.3 Ease of Use . 95

5.2 Previous frameworks . 96

x

5.3 Architecture . 97

5.3.1 Concepts . 97

5.3.2 Interfaces . 98

5.4 Examples . 100

5.4.1 Problem . 100

5.4.2 Solver . 103

5.4.3 Simulator . 103

5.5 Discussion . 104

6 Summary and Future Work 106

6.1 Contributions and Summary . 106

6.2 Future Work . 108

A Proof of Theorem 1 111

xi

List of Tables

2.1 Parameters for numerical experiments 45

3.1 IDM and MOBIL parameters for different driver types. 61

3.2 Various simulation parameters . 62

4.1 Experimental results . 85

4.2 Hyperparameters used in experiments 91

xii

List of Figures

2.1 Trusted resolution logic . 22

2.2 Intruder interpolation grid . 38

2.3 Goal interpolation grid . 39

2.4 UAV Collision avoidance policy visualizations 41

2.5 Intruder initial conditions . 43

2.6 Policy performance comparison . 44

3.1 Lane changing scenario . 50

3.2 Lane changing action space . 55

3.3 Performance curves at correlation extremes 64

3.4 Performance curves at correlation 0.75 65

3.5 Average hard braking frequency and success rate 67

3.6 Performance variation with Θ correlation 68

3.7 Parameter correlation robustness study 69

3.8 Parameter domain robustness study 70

4.1 POMCP tree on a continuous observation space 74

4.2 POMCP-DPW and POMCPOW tree structure comparison 78

4.3 Laser Tag benchmark . 84

4.4 Light Dark problem . 86

4.5 Sub Hunt problem . 87

4.6 Van Der Pol tag problem . 88

4.7 Discretization granularity studies . 90

xiii

5.1 POMDPs.jl concepts . 98

5.2 POMDPs.jl interfaces . 100

5.3 POMDPs.jl requirements example . 101

xiv

Chapter 1

Introduction

Safety and efficiency are two important goals for technology in many domains. This

thesis focuses on the autonomous vehicle domain, an application area that is cur-

rently growing quickly. Before outlining specific research results, this chapter gives

an introduction to some benefits of and challenges for autonomous vehicles and some

of the basic theoretical structures for approaching the problem of controlling them.

1.1 Autonomous Vehicles

Until now, vehicles have been almost exclusively operated by humans. However, re-

cent advances in sensing technology, computing power, mapping, data processing, and

connectivity have made it possible to begin developing vehicles that are autonomous,

that is, they can perform a transportation task without requiring a human to control

them.

1.1.1 Benefits of Autonomous Transportation

Autonomous vehicles have the potential to bring a wide range of benefits. The first

of these benefits is improved safety. Around the world, more than 1.2 million

people are killed every year by vehicles [37], and, according to a study concluded in

2007, the critical reason for more than 90 % of motor vehicle crashes in the United

1

CHAPTER 1. INTRODUCTION 2

States is driver error [94]. Since they are not affected by many of the crash-causing

deficiencies that human drivers have, including distraction, tiredness, and impairment

due to drugs or alcohol, autonomous vehicles have the potential to greatly reduce the

number of injuries and deaths.

Another potential benefit of autonomous vehicles is increased collective effi-

ciency. Currently, middle- and low-income nations lose up to 3 % of GDP due to

road vehicle accidents, many of which could be mitigated with autonomy [37]. More-

over, autonomy has the potential to enable new models of vehicle usage for cities. For

example, a city-wide mobility-on-demand (MOD) system consisting of purpose-built

electric autonomous vehicles could provide a much more efficient system for com-

muting than the current fleet of individually-owned gas-powered vehicles optimized

for factors other than commuting efficiency. The barriers to adopting such a system

may be greatly reduced by autonomous vehicles’ ability to, for instance, automati-

cally travel to a charging station or rebalance to places where additional vehicles are

needed. A recent study concluded that Manhattan taxi demand could be met with a

fleet of autonomous cars 60 % the size of the current taxi fleet [112].

The third benefit is the potential for reduced personal transportation costs

in terms of time and stress. In the United States, workers commute an average of more

than 25 min in each direction [68], and more than three quarters drive alone [67]. Thus

a large fraction of American workers use an hour of their day focused on operating

a vehicle. With autonomous vehicles, this stressful time could be eliminated and

replaced with productive time or rest.

The final potential benefit that will be listed here is expanding access to mo-

bility. The requirement for a capable vehicle operator prevents many people from

using cars. For example, many people with permanent disabilities such as blindness or

seizure disorders or even temporary injuries are precluded from the flexible personal

point-to-point transportation afforded by cars, and this increases their dependence

on caretakers. Autonomous cars would give these people safe and flexible personal

transportation.

CHAPTER 1. INTRODUCTION 3

1.1.2 Current Progress

There has been a great deal of progress towards autonomy. For example, several

companies including Amazon [91] and Alphabet [86], are pursuing delivery systems

consisting of autonomous aerial drones. A focal point of early ground vehicle de-

velopment was the 2007 DARPA Urban Challenge [19], which was the first major

demonstration of self-driving cars operating in a simulated urban environment. Since

that time, significant progress has been made and testing operations in a small number

of urban environments has become routine [26].

1.1.3 Remaining Challenges

Despite the considerable progress made towards autonomy, there are currently no

large-scale commercial applications of autonomous vehicles, and several challenges

remain. This section does not give an exhaustive list of the challenges remaining

for deployment of autonomous vehicles, but it outlines a few and discusses how this

thesis relates to them.

Technical

Some of the largest remaining technical challenges for autonomous vehicle develop-

ment are challenges of generalization. Many of the components for navigating within

a closed test space had already been developed by the time of the DARPA urban chal-

lenge in 2007 [19]. An industry leader has noted that “it’s relatively easy to master

the first 90 % of driving where you’re traveling on freeways, navigating light city-street

traffic, or making your way through simple intersections” [26]. However, autonomous

vehicle testing is still limited to relatively small well-mapped environments because

it is difficult to generalize solutions to new domains.

In order to handle a larger and more diverse set of circumstances, autonomous

vehicle designers must both gather more data [26] and design control systems to

operate in the new environment. One approach to control system design is to iterate

with a two step process consisting of (1) specifying a control policy by hand, and (2)

CHAPTER 1. INTRODUCTION 4

evaluating these actions against some criteria. Examples of this approach are hand-

tuned linear control systems and the specified behaviors of some of the urban challenge

competitors (e.g. Urmson, Anhalt, Bagnell, et al. [107]). A second approach is to use

algorithms that systematically and automatically determine a good control policy

according to some criterion. While the first approach is adequate for some simple

constrained domains, the second is more likely to work in regimes that the designers

have not explicitly tested. Moreover, the second approach reduces the number tasks

required to adapt to a new operational environment from two (identifying a model

and designing a control system) to one (identifying a model). The algorithms and

applications in this thesis belong to the latter family and improve our ability to apply

the approach to problems with complex and uncertain dynamics.

There are many other technical challenges including perception in adverse condi-

tions, testing, security, cost reduction, linking perception with reasoning, and others,

but they are not directly addressed in this work.

Ethical, Legal, and Economic

In addition to the technical challenges, there are a wide range of ethical, legal, and

economic challenges, including liability assignment, job displacement, and discrimi-

nation against certain populations, that have the potential to hinder the success of

autonomous vehicles [20]. This thesis does not seek to systematically address moral

or legal challenges, but it does speak to one in particular. Autonomous vehicles must

often make decisions that balance the interests of multiple people. For instance, in

addition to the performance criteria that the vehicle operator desires, there may be

externalities that affect the well-being of other people. There is often a tradeoff be-

tween these objectives. For instance, traveling with increased speed will allow the

owner to transport passengers or cargo faster, but it may endanger bystanders. The

results in this thesis show that, for the specific competing goals of safety and effi-

ciency, both can be simultaneously improved by using better models and algorithms

(see Chapters 2 and 3). It is likely that this principle will also apply to other trade-

offs. Better algorithmic and modeling approaches may be an answer in cases where

competing ethical, legal, and economic principles are at odds.

CHAPTER 1. INTRODUCTION 5

1.2 Decision Making Under Uncertainty

The task of controlling an autonomous vehicle is a task of decision making under

uncertainty. That is, the vehicle control system must decide what actions to take to

achieve good performance, even when there is uncertainty about the world around it

and what will happen in the future. There are two ingredients needed to formulate

such a problem. The first is a criterion for good performance, and the second is a

model of what is known about the world and how it will evolve.

1.2.1 Optimization objective

This thesis casts decision making problems as optimization problems. That is, the

criterion for good performance is that the actions chosen maximize an objective func-

tion,1

maximize
π

J(π) (1.1)

where π determines what actions are taken depending on the inputs. The concrete

structures for π and J are presented in Section 1.2.3, but a brief introduction is given

here.

To define an objective function, an engineer must map the desires of human passen-

gers or abstract societal goals like those described in Section 1.1.1 into a well-defined

mathematical function. This is sometimes straightforward for individual goals such

as minimizing the time to reach a destination. However, combining multiple goals is

often a challenge because an optimization problem is not, in general, well-posed if it

has multiple objective functions.

One solution to this problem is to optimize a single objective, J0, and constrain

1This thesis makes no distinction between objective functionals that map from spaces of functions
to scalar values and objective functions that map from scalar or vector spaces to scalar values. The
term “objective function” will be used for both.

CHAPTER 1. INTRODUCTION 6

all other objectives, Ji, to meet specified thresholds, Di [2],

maximize
π

J0(π)

subject to J1(π) ≥ D1

J2(π) ≥ D2

. . .

Jn(π) ≥ Dn.

(1.2)

However many off-the-shelf decision-making algorithms must be modified to handle

this formulation, and choosing the thresholds adds another step to the development

process.

Another alternative is to create a single objective function that is a weighted sum

of the functions corresponding to the individual rewards,

maximize
π

J0(π) + λ1J1(π) + λ2J2(π) + . . .+ λnJn(π), (1.3)

where λi are the relative weights. This scalarization approach allows conventional

decision-making algorithms to be used, but choosing appropriate weights before solv-

ing the problem is often difficult.

Another challenge is that human preferences can be difficult to quantify and en-

code into a reward function. For these cases, inverse reinforcement learning [64, 85] or

preference elicitation [63] can be used to determine a suitable reward function based

on data recording how humans act.

This thesis does not make significant contributions to understanding how to choose

appropriate objectives, but instead adopts the weighted sum scalarization approach

to combine a few important objectives. In particular, the investigation focuses on the

goals of safety and efficiency, which are balanced using a scaling factor, λ,

maximize
π

JE(π) + λ JS(π). (1.4)

It adopts a stance that is agnostic to the value λ by focusing on Pareto frontier

CHAPTER 1. INTRODUCTION 7

analysis.

A solution is said to be Pareto-optimal if no objective can be improved without

adversely affecting another objective. In particular, every solution to problem (1.4)

for a positive value of λ is Pareto-optimal, though there may also be additional Pareto-

optimal points that do not correspond to solutions of this problem. The Pareto front

is the set of all Pareto-optimal solutions.

Since exact solutions to the problems studied in this thesis are intractable, it is

impossible to reliably generate points on the true Pareto front. Instead, approxi-

mate Pareto fronts are constructed by connecting approximate solutions to (1.4) with

straight lines (see Fig. 2.6 for an example), and conclusions about different algorithms

can be reached by comparing the resulting curves generated by different algorithms.

Given two algorithms, A and B, if the Pareto front for A is in a better position than

that of B for most or all values of λ, then it is possible to argue that algorithm A is

superior to algorithm B without committing to a particular value of λ.

1.2.2 Uncertainty in Decision Making

The second primary ingredient to a decision making problem is a model of the random-

ness in the mapping from actions to the objective function. This thesis is concerned

with three types of uncertainty: outcome, model, and state. Although the definitions

of these types are not mathematically formal, they are useful for conceptual under-

standing. The distinctions between the types are defined based on the concept of

“Markov state”.

Markov state

Consider the case where the configuration of the world changes over time according

to a dynamics model. This thesis only considers models where these changes occur

at specific discrete time intervals. A Markov state, or simply state, consists of the

world configuration and possibly some other information specially chosen so that the

state at the next time step depends only on the current state and not on any previous

states. This property of independence from past history is known as the Markov

CHAPTER 1. INTRODUCTION 8

property. In general, the state may be a random variable, and, in this case, the next

state must be stochastically independent of all previous states when conditioned on

the current state.

Outcome Uncertainty

The simplest type of uncertainty is outcome uncertainty. Outcome uncertainty is

uncertainty in the future state even when the current state and model are known

exactly. In other words, it refers to the inherent stochasticity in the model. The

distinguishing property of outcome uncertainty is that nothing can be learned by the

agent to reduce it.

Model Uncertainty

A second category for uncertainty is model uncertainty. In some cases, the dynamic

model of the system is not known to the agent, and this can be a source of uncertainty

in the future of the state that compounds the outcome uncertainty. The distinction

is that, over time the agent can observe how the state changes to learn more about

the model and reduce this type of uncertainty. Methods that attempt to optimize an

objective in the face of this type of uncertainty are usually referred to as reinforcement

learning methods [101].

State Uncertainty

A third type of uncertainty is state uncertainty. When there is state uncertainty, the

agent cannot directly observe the state, and instead receives only observations that

offer clues about it. However, it may reason about what the state could be and make

better decisions based on this partial knowledge. The distinction between state and

model uncertainty is that the state may change over time, while the model does not.

Model uncertainty can be represented as state uncertainty by augmenting the state

to include the unknown model parameters.

CHAPTER 1. INTRODUCTION 9

1.2.3 Markov Decision Processes

The Markov decision process (MDP) is a mathematical formalism that can represent

a wide range of sequential decision making problems [10, 52]. In an MDP, an agent

takes actions that affect the state of the system and collects rewards based on the

states and actions. The MDP formalism is able to represent outcome uncertainty

with a stochastic state transition model. Typically the state at time t will be denoted

st, and the action at time t denoted at, however in some contexts where only one step

of time is relevant, the subscripts will be dropped for the sake of clarity and brevity,

and s′ will be used to denote the next state that the system transitions into.

Formally, an MDP is defined by the 5-tuple (S,A, T ,R, γ). The state space, S, is

the set of all possible states. The action space, A, is the set of all actions available to

the agent. The transition model, T , represents the likelihood of different transitions,

where T (s′ | s, a) denotes the probability that the system will transition to state s′

given that action a is taken in state s. The reward function, R : S × A × S → R
represents the rewards received while interacting in the environment, whereR(s, a, s′)

denotes the reward for transitioning from s to s′ when action a is taken. Finally, γ

governs how reward is discounted in the future.

The objective in an MDP is to find a policy, π : S → A, that maps each en-

countered state to an action and, when at = π(st), maximizes the objective function.

Because of the outcome uncertainty, the rewards that a policy will achieve are random

variables. Thus, for the optimization problem to be well-posed, the objective must

be a function of the distribution of the rewards. For a Markov decision process, the

objective is to maximize the cumulative expected reward,2

J(π) = E

[
∞∑
t=0

γtR(st, π(st), st+1)

]
. (1.5)

It is important to note that it is sufficient to consider only the class of deterministic

Markov policies, that is, policies that map each state to a single action, when searching

2Sequential decision problems where the objective involves maximizing a measure other than
the expectation of the reward have been studied, but are much less common, and their solution is
sometimes much more difficult than in the expectation case [22].

CHAPTER 1. INTRODUCTION 10

for an optimal solution. It has been proven that, for a policy of any structure, e.g. a

policy that is stochastic or a policy that depends on more than just the state, there

exists a Markov policy that can attain the same objective value. Consequently, it

is always possible to find a deterministic Markov policy that achieves the optimal

objective value [2].

The objective of an MDP is sometimes discussed in terms of the optimal value

function V ∗ : S → R, which is the cumulative expected reward given that the system

starts in a specified state. The optimal state action value function, Q∗(s, a), is defined

as the expectation of the future cumulative reward given that the agent starts in state

s, immediately takes action a, and then follows the optimal policy [10, 52, 2].

1.2.4 Partially Observable Markov Decision Processes

A partially observable Markov decision process (POMDP) is similar to an MDP except

that the agent cannot directly observe the state. Instead, the agent only has access

to observations that are generated probabilistically based on the actions and latent

true states. In this way, a POMDP is able to represent state uncertainty in addition

to the outcome uncertainty that can be encoded in an MDP. A POMDP is defined by

the 7-tuple (S,A, T ,R,O,Z, γ), where S, A, T , R, and γ have the same meaning

as in an MDP. Additionally, O, is the observation space, and Z is the observation

model. Z(o | s, a, s′) is the probability or probability density of receiving observation

o in state s′ given that the previous state and action were s and a [10, 52, 47].

Information about the state may be inferred from the entire history of previous ac-

tions and observations and the initial information, b0. Thus, in a POMDP, the agent’s

policy is a function mapping each possible history, ht = (b0, a0, o1, a1, o2, . . . , at−1, ot)

to an action. In some cases, each state’s probability can be calculated based on the

history. This distribution is known as a belief, with bt(s) denoting the probability of

state s.

The belief is a sufficient statistic for optimal decision making. That is, there exists

a policy, π∗ such that, when at = π∗(bt), the expected cumulative reward or “value

function” is maximized for the POMDP [47, 52]. Given the POMDP model, each

CHAPTER 1. INTRODUCTION 11

subsequent belief can be calculated using Bayes’ rule according to

b′(s′) =

∫
s∈S Z(o | s, a, s′)T (s′ | s, a)b(s) ds∫

s′∈S

∫
s∈S Z(o | s, a, s′)T (s′ | s, a)b(s) ds ds′

. (1.6)

When the state space is discrete, the integrals may be replaced with sums.

Unfortunately, it has been shown that even the class of finite-horizon POMDPs is

PSPACE-complete, indicating that it is extremely unlikely that efficient general exact

algorithms for large problems will be discovered [76]. Because of this, approximate

algorithms are often used.

Generative Models

For many problems, it can be difficult to explicitly determine or represent the proba-

bility distributions T or Z. Some solution approaches, however, only require samples

from the state transitions and observations. A generative model, G, stochastically

generates a new state, reward, and observation in the partially observable case, given

the current state and action, that is s′, r = G(s, a) for an MDP, or s′, o, r = G(s, a)

for a POMDP. A generative model implicitly defines T and Z, even when they cannot

be explicitly represented.

Belief MDP

Every POMDP is equivalent to an MDP where the state space of the MDP is the

space of possible beliefs. The reward function of this ”belief MDP” is the expectation

of the state-action reward function with respect to the belief. The Bayesian update

of the belief serves as a generative model for the belief space MDP.

1.2.5 Value Iteration

Value iteration is the simplest offline method for solving MDPs. It relies on the

Bellman equation, which characterizes the optimal value function,

V ∗(s) = max
a∈A
{R(s, a) + E [V ∗(s′) | s, a]} . (1.7)

CHAPTER 1. INTRODUCTION 12

For discrete problems, the unique solution to the Bellman equation, V ∗, can be found

through repeated application of the Bellman operator,

B[V](s) = max
a∈A
{R(s, a) + E [V (s′) | s, a]} . (1.8)

When B is applied iteratively, i.e. Vk+1 = B[Vk], the value function will eventually

reach a fixed point when Vk+1 = Vk.
3 This point is the optimal value function, and the

process of finding the value function in this manner is known as value iteration [10].

Once the optimal value function has been found, the optimal policy may be easily

extracted according to

π∗(s) = argmax
a∈A

{R(s, a) + E [V ∗(s′) | s, a]} . (1.9)

1.2.6 Monte Carlo Tree Search

In many cases, the state and action spaces of a problem are so large that computing

a complete solution offline is intractable. Instead, approximate solutions valid only

for the current state may be calculated online during execution in the environment.

One way of accomplishing this is to create a policy tree consisting of alternating

layers of state nodes and action nodes that evaluates every possible future trajectory.

Unfortunately, it is typically infeasible to construct a sufficiently deep tree because

construction is exponentially complex with respect to the depth [52].

Monte Carlo tree search (MCTS) is a method that uses Monte Carlo simulations

to incrementally construct only important parts of the policy tree. By estimating

the state-action value function, Q(s, a), for each of the action nodes within the tree

and focusing further exploration on nodes with high values, it can achieve good re-

sults without attempting the exponentially complex task of constructing the entire

policy tree. MCTS is widely studied and has proven to be effective in a variety of

contexts [17]. Only a generative model, G, is required by the algorithm. Although

there are many variations of this algorithm, they are built around a common Monte

3The uniqueness of the fixed point and convergence to that fixed point are guaranteed because
the Bellman operator is a contraction mapping [46].

CHAPTER 1. INTRODUCTION 13

Carlo simulation process that is repeated n times. Each simulation consists of the

following four steps:

1. Search. In the initial phase of the simulation, the policy defined by the tree is

used. At each state node, a selection criterion based on Q is used to choose

a favorable action, and the tree is traversed through the node and to the next

state node determined by G.

2. Expansion. Eventually, the simulation reaches an action node that does not have

any children. At this point, a new state is sampled with G and a corresponding

node created along with children corresponding to each action.

3. Rollout. After the expansion step, the simulation is continued with a rollout pol-

icy, often consisting of randomly selected actions, until the future accumulated

reward will be negligible because of the compounding discount factor.

4. Update. Once the simulation has terminated, the estimates of Q(s, a) at each

of the visited action nodes are updated with the discounted reward received

during the simulation after visiting the node.

This approach builds a tree asymmetrically favoring regions of the state and action

spaces that are likely to be visited when the optimal policy is executed.

Upper Confidence Trees

The selection criterion used to choose actions in the search phase is very important.

It must balance favoring actions with large Q values that are expected to yield good

results with exploration of new actions. A widely used approach for this is the upper

confidence bound for trees (UCT) algorithm [17]. At each state node, it chooses the

action that maximizes the upper confidence bound

UCB(s, a) = Q(s, a) + c

√
logN(s)

N(s, a)
(1.10)

where N(s, a) is the number of times the action node has been visited, N(s) =∑
a∈AN(s, a), and c is a problem-specific parameter that governs the amount of

CHAPTER 1. INTRODUCTION 14

exploration in the tree. The second term causes the algorithm to favor actions that

have been taken less often.

Double Progressive Widening

In cases where the action and state spaces are large or continuous, the MCTS al-

gorithm will produce trees that are very shallow. In fact, if the action space is

continuous, the UCT algorithm will never try the same action twice (it is understood

that, if N(s, a) = 0 then UCB(s, a) in (1.10) is infinite, so untried actions are always

favored). Moreover, if the state space is continuous and the transition probability

density is finite, the probability of sampling the same state twice from G is zero.

Because of this, simulations will never pass through the same state node twice and a

tree below the first layer of state nodes will never be constructed.

In progressive widening, the number of children of a node is artificially limited

to kNα, where N is the number of times the node has been visited and k and α

are parameters chosen for the problem [23]. Originally, progressive widening was

applied to the action space, and was found to be especially effective when a set of

preferred actions was tried first [17]. The term double progressive widening refers to

progressive widening in both the state and action space. When the number of state

nodes is greater than the limit, instead of simulating a new state transition, one of

the previously generated states is chosen with probability proportional to the number

of times it has been previously generated.

1.2.7 Particle Filtering

Aside from a few special cases, for example when the system dynamics are linear

and the transition and observation distributions are Gaussian, the integrals in the

Bayesian belief update (1.6) are impossible or difficult to solve analytically. Thus,

numerical approaches must be used. A popular technique for this is particle filter-

ing, usually incorporating domain-specific heuristic modifications to prevent problems

such as particle depletion [104].

CHAPTER 1. INTRODUCTION 15

Sequential importance resampling, one of the most common and effective varia-

tions, requires a state generative model, Gs that can sample from the transition dis-

tribution and an explicit representation of the observation distribution, Z(· | s, a, s′).
The belief is approximated with a set of m particles, {si}mi=1 and associated weights,

{wi}mi=1. The probability of each state is approximated by the sum of the weights

corresponding to particles with that state value,

b(s) ≈
m∑
i=1

wiδs(si) (1.11)

where δs(·) is the Dirac delta function centered at s. A belief update is approximated

by sampling m states {s̃i}mi=1 from the collection of particles with probability propor-

tional to the associated weight, generating a particle, s̃′i = G(s̃i, a) for each of these

states, and finally setting the new weight proportional to the probability of generating

the measured observation with this state, w′i ∝ Z(o | s̃i, a, s̃′i).

1.2.8 Approximate Solutions to POMDPs

Considerable progress has been made in solving large POMDPs. Initially, exact offline

solutions to problems with only a few discrete states, actions, and observations were

sought by using value iteration and taking advantage of the convexity of the value

function [47], although solutions to larger problems were also explored using Monte

Carlo simulation and interpolation between belief states [103]. Many effective offline

planners for discrete problems use point based value iteration, where a selection of

points in the belief space are used for value function approximation [58]. Offline

solutions for problems with continuous state and observation spaces have also been

proposed [8, 16].

There are also various solution approaches that are applicable to specific classes

of POMDPs, including continuous problems. For example, Platt, Tedrake, Kael-

bling, and Lozano-Perez [78] simplify planning in large domains by assuming that

the most likely observation will always be received, which can provide an acceptable

approximation in some problems with unimodal observation distributions. Morere,

CHAPTER 1. INTRODUCTION 16

Marchant, and Ramos [71] solve a monitoring problem with continuous spaces with

a Gaussian process belief update. Hoey and Poupart [43] propose a method for

partitioning large observation spaces without information loss, but demonstrate the

method only on small state and action spaces that have a modest number of con-

ditional plans. Other methods involve motion-planning techniques [69, 79, 18]. In

particular, Agha-Mohammadi, Chakravorty, and Amato [1] present a method to take

advantage of the existence of a stabilizing controller in belief space planning. Van

Den Berg, Patil, and Alterovitz [108] perform local optimization with respect to un-

certainty on a pre-computed path, and Indelman, Carlone, and Dellaert [45] devise

a hierarchical approach that handles uncertainty in both the robot’s state and the

surrounding environment.

General purpose online algorithms for POMDPs have also been proposed. These

algorithms are mostly derivatives of the MCTS algorithm for MDPs (Section 1.2.6).

A conceptually straightforward way to solve a POMDP using MCTS is to apply it to

the corresponding belief MDP. Indeed, many tree search techniques have been applied

to POMDP problems in this way [81]. However, when the Bayesian belief update is

used, this approach is computationally expensive.

A major improvement in efficiency came with the introduction of the partially

observable Monte Carlo planning (POMCP) algorithm [92]. It is based on UCT,

but can tackle problems many times larger than its predecessors because it uses state

trajectory simulations, rather than full belief trajectories, to build the tree. Each node

in the POMCP tree corresponds to an action- or observation-terminated history. At

each iteration, a state is sampled from the current belief and simulated through the

nodes that match the history as it is generated. Thus, the belief at each observation-

terminated history node is effectively represented by the collection of states for the

appropriate time step in the trajectories that match the history. This is similar to

using a rejection sampling unweighted particle filter. It should be noted that when

this thesis uses the term POMCP, it refers only to the UCT-based decision-making

algorithm called PO-UCT by Silver, Huang, Maddison, et al. [92] and not to the belief

update scheme that re-uses simulations from the planning stage.

Determinized sparse partially observable tree (DESPOT) is a similar approach

CHAPTER 1. INTRODUCTION 17

that attempts to achieve better performance by analyzing only a small number of

random outcomes in the tree [97]. Additionally, an algorithm called adaptive belief

tree (ABT) was designed specifically to accommodate changes in the environment

without having to replan from scratch [60].

Some very recent methods, e.g. QMDP-Net [49], have attempted to solve POMDPs

by training recurrent neural networks.

1.2.9 QMDP

One POMDP approximation that is particularly useful in many contexts, but known

to be sub-optimal for some, is the QMDP approximation. This approximation is based

on an algorithm proposed by Littman, Cassandra, and Kaelbling [65]. However, in

this thesis, it will refer to a broader class of approximations. Specifically, it refers to

any policy where the action maximizes the expected QMDP value for the belief.

Let QMDP be the optimal state-action value function for the fully observable MDP

at the core of the POMDP. Then the expected QMDP value for a belief action pair

is QMDP(b, a) =
∫
s∈S QMDP(s, a)b(s) ds. Since it chooses the action that maximizes

this value, it is easy to see that the QMDP approximation is the optimal solution

to a problem with partial observability on the current step, but that subsequently

becomes fully observable.

Because the QMDP approximation assumes that all information about the state

of the problem will become available on the next step, it has no incentive for learn-

ing about the state, and hence cannot choose to take costly information-gathering

actions, even if they are part of the optimal solution to the POMDP. Nevertheless,

the approximation is useful in many domains because it is much easier to compute

than the full POMDP solution — it requires only the solution to the fully observ-

able MDP, which can usually be calculated efficiently using value iteration or another

method. Moreover the QMDP solution has acceptable quality for many domains (see,

for example, Table 4.1).

CHAPTER 1. INTRODUCTION 18

1.3 Contributions and Outline

The body of this thesis is laid out in four chapters. Each contains one or more

contributions.

Chapter 2 analyzes the use of certifiable trusted resolution logic (TRL) along-

side approximate optimization in the context of unmanned aerial vehicle collision

avoidance. Specifically, the price of certifiability is quantified by observing the gap

between the Pareto fronts for two approaches: (1) using the TRL with varying levels

of conservativeness and (2) directly solving the MDP representation of the problem.

Simulation results then demonstrate that this gap can be largely closed without sac-

rificing certifiability by using the TRL as a safety constraint on the action space and

solving the resulting MDP.

Chapter 3 considers the effects of modeling uncertainty in a difficult lane changing

task for a self-driving car. Specifically, simulations are used to estimate the Pareto

fronts for planning with several approximations of the internal states of other hu-

man drivers such as their intentions and dispositions. While several other researchers

have used internal-state-aware planning methods to interact with human drivers in

desirable ways, they have not evaluated whether these methods offer a substantial

quantitative improvement over conventional approaches. In a simplified simulated

setting, planning with internal states using a POMDP formulation can significantly

improve both safety and efficiency simultaneously. In particular, POMDP planning

that includes state uncertainty is evaluated against both overconfident and conserva-

tive MDP models with only outcome uncertainty, showing that planning with state

uncertainty has a benefit over both. The experimental method proposed here is also

applicable to other cases in which internal-state-aware planning may improve perfor-

mance.

The benefits of POMDP planning can only be realized with algorithms that can

handle the continuous and irregular domains found in the real world. To that end,

Chapter 4 proposes a pair of new algorithms for solving POMDPs with continuous

state, action, and observation spaces. These algorithms are motivated by analysis and

numerical experiments that show that leading online POMDP solvers cannot handle

CHAPTER 1. INTRODUCTION 19

continuous observation spaces. Previous solvers are shown to exhibit suboptimal

behavior, explained by degenerate belief nodes with only a single state particle. One

particular solver is proven to converge to the suboptimal QMDP approximation. The

new algorithms, POMCPOW and PFT-DPW, handle this problem using progressive

widening and weighted particle belief representations. Numerical experiments show

that they are able to solve problems where previous methods fail.

Chapter 5 contains a description of the final contribution, which is a software

package, POMDPs.jl, that aims to make the advances made in this thesis easier

for others to build upon. The package uses the features of the Julia programming

language to provide a convenient and flexible interface for expressing POMDPs. It

also contains many tool for running simulations and has a suite of state-of-the art

solvers and tools for writing new ones.

Much of the work in this thesis has been previously published in various venues [98,

99, 100, 32], but each section of the thesis contains important new additions.

Chapter 2

Trusted and Optimized UAV

Collision Avoidance

This thesis’s first investigation into safety and efficiency is in the context of unmanned

aerial vehicles (UAVs). Collision avoidance is an important challenge that must be

overcome to make UAV operation routine and safe. In this chapter, the suitability of

the collision avoidance system for easy certification is the primary safety focus. The

challenge is to create a system that is both easy to certify and has minimal impact

on efficient normal operations.

2.1 Collision Avoidance for UAVs

As unmanned aerial vehicles (UAVs) move toward full autonomy, it is vital that they

be capable of effectively responding to anomalous events, such as the intrusion of

another aircraft into the vehicle’s flight path. Minimizing collision risk for aircraft

in general, and UAVs in particular, is challenging for a number of reasons. First,

avoiding collision requires planning in a way that accounts for the large degree of

uncertainty in the future paths of the aircraft. Second, the planning process must

balance the competing goals of ensuring safety and avoiding disruption of normal

operations. Many approaches have been proposed to address these challenges [57, 75,

5, 41, 42, 72, 102, 53, 54, 48, 7, 44, 80].

20

CHAPTER 2. TRUSTED AND OPTIMIZED UAV COLLISION AVOIDANCE 21

At present, there are two fundamentally different approaches to designing a con-

flict resolution system.The first approach focuses on inspiring confidence and trust in

the system by making it as simple as possible for government regulators and vehicle

operators to understand. This is accomplished by constructing the algorithm using

hand-specified rules. Several algorithms that fit this paradigm have been proposed,

and research toward formally verifying their safety-critical properties is underway [5,

41, 42, 72]. In this chapter, such algorithms are referred to as trusted resolution

logic (TRL). Many TRL systems have a number of parameters that determine how

conservatively the system behaves. These parameters may be tuned to meet spe-

cific performance goals, but their exact effects on performance can typically only be

characterized empirically.

The second approach focuses on optimizing performance. This entails the offline

or online computation of a “best” response action. Dynamic programming is widely

used for this task [102, 53, 54, 48, 7, 44]. Conflict resolution systems designed using

this approach will be referred to as directly optimized systems. Unfortunately, even if

a conflict resolution system performs well in simulation, government regulators and

vehicle operators will often (and sometimes rightly) be wary of trusting its safety due

to perceived complexity and unpredictability. Even in the best case, such a system

would require expensive and time-consuming development of tools for validation as

was the case for the recently developed replacement for the traffic alert and collision

avoidance system (TCAS) [44].

This chapter proposes two conflict resolution strategies that combine the strengths

of trusted resolution logic and direct optimization approaches. In both strategies, dy-

namic programming is used to find near-optimal actions for each state. The difference

lies in the set of actions available to the optimizer. In the optimized TRL approach,

the actions are a set of certified TRL parameters. In the trusted direct optimization

approach, the actions are a state-dependent set of immediate response actions that

are deemed safe by certified TRL. Both strategies may achieve better performance

than the base TRL without becoming significantly more difficult to certify.

The new approaches are tested in a scenario containing a UAV equipped with a

perfect (noiseless) sensor to detect the state of an intruder and a simple reference

CHAPTER 2. TRUSTED AND OPTIMIZED UAV COLLISION AVOIDANCE 22

D

Intruder

Own UAV

Nominal Path

Reso
lutio

n

Figure 2.1: Trusted resolution logic. The near mid air collision exclusion zone (circle
with radius D) moves with the intruder through time, but is shown here only at the
time of closest approach. The TRL (Algorithm 1) finds a straight trajectory close to
the nominal path that avoids this zone.

TRL to resolve conflicts. This TRL, illustrated in Figure 2.1, determines a path that

does not pass within a specified separation distance, D, of the intruder given that the

intruder maintains its current heading (except in cases where no such path exists or

when the TRL’s heading resolution is too coarse to find such a path). This reference

TRL is described in more detail in Section 2.2.4.

To account for uncertainty in the intruder’s flight path, if D takes a constant

value, say D̄, the value must be increased to ensure safety, but this may cause un-

necessary departures from normal operation. To overcome this limitation and ensure

safety without being too conservative, implementations of the two strategies men-

tioned above are applied. The optimized TRL approach computes a policy, πD, that

specifies a time varying separation distance, Dt, for each encounter state, while the

direct optimization and trusted direct optimization approaches compute policies, πφ

and πTφ, that specify a bank angle, φt for each encounter state. For this reason,

symbols referring to the optimized TRL approach generally have subscript D, while

those referring to direct optimization and trusted direct optimization have a subscript

φ.

The problem of dynamically selecting actions Dt or φt can be formulated as a

Markov decision process (MDP). Online solution of πD, πφ, or πTφ using an algorithm

such as Monte Carlo Tree Search (MCTS) [23] would be conceptually straightforward,

CHAPTER 2. TRUSTED AND OPTIMIZED UAV COLLISION AVOIDANCE 23

but would require significant computing power onboard the vehicle, and it would be

difficult and time-consuming to rigorously certify the implementation of MCTS due

to its reliance on pseudo-random number generation. A key contribution of this

chapter is to devise an offline approach to compute the policies. Offline optimization

is difficult because of the size of the state space of the MDP, which is the Cartesian

product of the continuous state spaces of the UAV and the intruder. This challenge is

overcome with a value function approximation scheme that uses grid-based features

that exploit the structure of the state space. This value function is optimized using

simulation-based approximate value iteration.

2.2 MDP Models

The problem of avoiding an intruder using one of the strategies above is formulated as

an MDP, referred to as an encounter MDP. An encounter involves two aerial vehicles

flying in proximity. The first is the vehicle for which the resolution controller is being

designed, which will be referred as the “own UAV” (or simply “UAV”). The second

is the intruder vehicle, which may be manned or unmanned and will be referred to as

the “intruder”. Specifically, the encounter MDP is defined by the tuple (S,A, T , R),

which consists of

• The state space, S: The state of the encounter, s, consists of (1) the state of

the own UAV, s(o), (2) the state of the intruder, s(i), and (3) a boolean variable

dev. The variable dev is set to true if the UAV has deviated from its nominal

course. Collectively, the state is given by the triple

s =
(
s(o), s(i), dev

)
. (2.1)

The state components s(o) and s(i) are specified in Section 2.2.2. To model

termination, the state space S includes a “dummy” termination state, denoted

with sterm.

• The action space, A: The action space differs for the two approaches as de-

scribed in detail in Section 2.2.5. a will be used to refer to all types of action

CHAPTER 2. TRUSTED AND OPTIMIZED UAV COLLISION AVOIDANCE 24

depending on the context.

• The state transition probability density function, T : S×A×S → R: The value

T (s, a, s′) is the probability density of transitioning to state s′ given that action

a is taken at state s. This function is implicitly defined by a generative model

that consists of a state transition function F (·) (described in Section 2.2.3) and

a stochastic process W (described in Section 2.2.2).

• The reward, R : S ×A → R: The reward function, defined in Section 2.2.6, re-

wards reaching a goal and penalizes near mid air collisions (NMACs), deviation

from the nominal path, and time outside a goal region.

2.2.1 Model Assumptions

Two important simplifying assumptions were made for this initial study. First, the

UAV and the intruder move only in the horizontal plane and at constant speed.

Modeling horizontal maneuvers is necessary because UAVs will likely have to employ

horizontal maneuvers in place of or in addition to the vertical maneuvers that current

collision avoidance systems for manned aircraft such as TCAS rely on. This is due to

both climb performance limitations and regulatory constraints such as the 400ft ceil-

ing for small (<55lb) commercial UAVs in Federal Aviation Administration rules [95].

Constraining altitude and speed simplifies exposition and reduces the size of the state

space, keeping the computational burden modest compared with a formulation that

includes variable altitude and speed. Extensions to higher fidelity models (e.g., [56])

are possible and left for future research. A higher fidelity model would present a

computational challenge, but perhaps not an insurmountable one. For example, the

TRL could be extended to handle variable speed and altitude, but the policy could be

optimized only on the most important dimensions of the model (e.g., the horizontal

plane). See [55] for a similar successful example.

Second, the intruder dynamics are independent of the UAV’s state; in other words,

the intruder does not react to the flight path of the UAV. The cooperative setting

where both the UAV and the intruder are equipped with a collision avoidance system

(CAS) [80, 105, 53] is left for future research.

CHAPTER 2. TRUSTED AND OPTIMIZED UAV COLLISION AVOIDANCE 25

2.2.2 Vehicle States and Dynamics

This paper uses a very simple discrete-time model of an encounter between two aerial

vehicles with time steps of duration ∆t. Throughout this section, the superscripts
(o) and (i) refer to the own UAV and intruder quantities, respectively, while the su-

perscript (·) may be replaced by either (o) or (i). Both the UAV’s and the intruder’s

states consist of the horizontal position (x, y) and heading ψ, that is

s(o) =
(
x(o), y(o), ψ(o)

)
, s(i) =

(
x(i), y(i), ψ(i)

)
. (2.2)

The UAV and intruder also have similar dynamics. Both aircraft fly forward in the

horizontal plane at constant speeds denoted by v(·). They may turn at rates ψ̇(·) that

remain constant over the simulation step. The following equations define the vehicle

dynamics:

x
(·)
t+1 =

x

(·)
t + v(·) cos

(
ψ

(·)
t

)
∆t if ψ̇(·) = 0

x
(·)
t + v(·) sin

(
ψ
(·)
t +wt∆t

)
−sin

(
ψ
(·)
t

)
ψ̇(·) otherwise

y
(·)
t+1 =

y

(·)
t + v(·) sin

(
ψ

(·)
t

)
∆t if ψ̇(·) = 0

y
(·)
t − v(·) cos

(
ψ
(·)
t +ψ̇(·)∆t

)
−cos

(
ψ
(·)
t

)
ψ̇(·) otherwise

ψ
(·)
t+1 = ψ

(·)
t + ψ̇(·)∆t.

The intruder makes small random turns with

ψ̇(i) = wt, (2.3)

where wt is a stochastic disturbance. We let W denote the stochastic process {wt : t ∈
N}. The random variables wt in W are assumed independent and identically normally

distributed with zero mean and a specified standard deviation, σψ̇. Subsequently, the

intruder dynamics will be collectively referred to as f (i) so that

s
(i)
t+1 = f (i)

(
s

(i)
t , wt

)
. (2.4)

CHAPTER 2. TRUSTED AND OPTIMIZED UAV COLLISION AVOIDANCE 26

The dynamics of the UAV are simplified conventional fixed wing aircraft dynamics

with a single input, namely the roll angle φ(o). We assume that the roll dynamics

are fast compared to the other system dynamics, so that the roll angle φ(o) may be

directly and instantaneously commanded by the control system. This assumption

avoids the inclusion of roll dynamics, which would increase the size of the state space.

ψ̇
(o)
t =

g tanφ
(o)
t

v(o)
, (2.5)

where g is acceleration due to gravity. The performance of the UAV is limited by a

maximum bank angle

|φ(o)
t | ≤ φmax. (2.6)

The UAV dynamics will be collectively referred to as f (o), and

s
(o)
t+1 = f (o)

(
s

(o)
t , φ

(o)
t

)
. (2.7)

2.2.3 Transition Function

It will often be convenient to refer to all of the dynamics in the state transition with

a single transition function, which will be defined below after defining additional

behavior regarding goals and near mid-air collisions.

The goal region that the UAV is trying to reach is denoted by Sgoal. This is the set

of all states in S for which
∥∥∥(x(o), y(o)

)
−
(
x

(o)
goal, y

(o)
goal

)∥∥∥ ≤ Dgoal, where Dgoal > 0 is a

specified goal region radius, and
(
x

(o)
goal, y

(o)
goal

)
is the goal center location. A near mid

air collision (NMAC) occurs at time t if the UAV and intruder are within a minimum

separation distance, DNMAC > 0, that is if
∥∥∥(x(o)

t , y
(o)
t

)
−
(
x

(i)
t , y

(i)
t

)∥∥∥ ≤ DNMAC. If

the UAV reaches the goal region at some time t, i.e., st ∈ Sgoal, or if an NMAC occurs,

the overall encounter state s transitions to the terminal state sterm and remains there.

If the UAV performs a turn, dev is set to true because the vehicle has now deviated

from the nominal straight path to the goal.

Let the state transition function, defined by (2.4), (2.7), and the special cases

CHAPTER 2. TRUSTED AND OPTIMIZED UAV COLLISION AVOIDANCE 27

above, be denoted concisely as F so that

st+1 = F (st, φ
(o)
t , wt). (2.8)

2.2.4 Reference Trusted Resolution Logic

The numerical tests use the simple reference TRL shown in Fig. 2.1. The TRL

determines a heading angle, ψ
(o)
resolution, that is close to the heading to the goal, ψ

(o)
goal,

and that will avoid future conflicts with the intruder given that the intruder maintains

its current heading. This is shown in Figure 2.1.

Minimum Separation Distance

Given an initial state s, a candidate heading for the UAV, ψ
(o)
cand, and that both

vehicles maintain their heading, the distance between the vehicles at the time of

closest approach is a simple analytical function. Specifically, consider the distance

d
(
s, ψ

(o)
cand, τ

)
between the vehicles τ time units in the future, i.e.,

d
(
s, ψ

(o)
cand, τ

)
=
√

∆x(τ)2 + ∆y(τ)2, (2.9)

where

∆x(τ) = x(i) − x(o) + τv(i) cos
(
ψ(i)
)
− τv(o) cos

(
ψ

(o)
cand

)
,

∆y(τ) = y(i) − y(o) + τv(i) sin
(
ψ(i)
)
− τv(o) sin

(
ψ

(o)
cand

)
.

The minimum distance between the two vehicles is analytically found by setting

the time derivative of d
(
s, ψ

(o)
cand, τ

)
to zero. Specifically, the time at which the

vehicles are closest is given by

τmin

(
s, ψ

(o)
cand

)
= max

{
a+ b

c− 2d
, 0

}
, (2.10)

CHAPTER 2. TRUSTED AND OPTIMIZED UAV COLLISION AVOIDANCE 28

where

a := −v(i)x(i) cos(ψ(i))− v(i)y(i) sin(ψ(i))

b := v(o)x(i) cos(ψ
(o)
cand) + v(o)y(i) sin(ψ

(o)
cand)

c := v(o) 2 + v(i) 2 cos2(ψ(i)) + v(i) 2 sin2(ψ(i))

d := v(o)v(i)(cos(ψ(i)) cos(ψ
(o)
cand) + sin(ψ(i)) sin(ψ

(o)
cand)).

The minimum separation distance over all future time is then

dmin

(
s, ψ

(o)
cand

)
:= d

(
s, ψ

(o)
cand, τmin

(
s, ψ

(o)
cand

))
. (2.11)

It will also be occasionally convenient to use dmin with only a state as an argument.

In this case, ψ
(o)
cand should be understood to be the UAV heading angle corresponding

to that state, that is dmin(s) := dmin(s, ψ(o)) where ψ(o) is the UAV heading in s.

Discrete Heading Optimization

The TRL begins with a discrete set of potential heading values (each denoted ψ
(o)
cand)

for the UAV. It then determines, for a desired separation distance D, which of those

will not result in a collision given that the UAV and intruder maintain their headings.

Finally, it selects the value from that set which is closest to ψ
(o)
goal. The TRL is outlined

in Algorithm 1.

2.2.5 Action Spaces and Control Systems

The numerical experiments consider policies generated by solving three different

MDPs, each with a different action space. For the sake of conciseness, a will be

used to represent any type of action depending on the context.

Direct Optimization

In the direct optimization approach, the actions are simply the bank angles less than

φmax, that is Aφ = {φ ∈ R : |φ| ≤ φmax}.

CHAPTER 2. TRUSTED AND OPTIMIZED UAV COLLISION AVOIDANCE 29

Algorithm 1 Trusted Resolution Logic

Input: Encounter state s, desired separation distance D
Output: Resolution heading angle ψ

(o)
resolution

function TRL(s, D)
Ψ←

{
ψ(o) + nπ/N : n ∈ {−N, . . . , N}

}
. range of values for heading

D∗ = max
ψ
(o)
cand∈Ψ

dmin

(
s, ψ

(o)
cand

)
if D∗ < D . conflict inescapable

Ψ←
{
ψ

(o)
cand ∈ Ψ : dmin

(
s, ψ

(o)
cand

)
= D∗

}
return argmin

ψ
(o)
cand∈Ψ

|ψ(o)
cand − ψ

(o)
goal|

else
Ψ←

{
ψ

(o)
cand ∈ Ψ : dmin

(
s, ψ

(o)
cand

)
≥ D

}
return argmin

ψ
(o)
cand∈Ψ

|ψ(o)
cand − ψ

(o)
goal|

Trusted Direct Optimization

In the trusted direct optimization approach, the set of actions is state dependent.

Specifically, it is the set of bank angles that the TRL deems safe, that is ATφ(s) =

{φ ∈ Aφ : dmin(F (s, φ, 0)) > DNMAC}.

Optimized TRL

In the optimized TRL approach, the actions are the possible values for the separation

distance, that is AD = D ∈ R≥0 used in the TRL (see Figure 2.1). A simple low level

control system converts the desired heading from the TRL (denoted ψ
(o)
resolution) and

into a bank angle for the vehicle. This is denoted with

φ
(o)
t = c

(
s

(o)
t , ψ

(o)
resolution

)
, (2.12)

where c(·) represents the low level controller. When the action is a separation distance,

the transition function, F , should be understood to contain the TRL and low level

CHAPTER 2. TRUSTED AND OPTIMIZED UAV COLLISION AVOIDANCE 30

control system, that is

F (st, Dt, wt) := F (st, c(s
(o)
t ,TRL(st, Dt)), wt). (2.13)

2.2.6 Reward

This section considers optimization of two competing metrics. The first goal is to

minimize the risk of a NMAC. This aspect of performance is quantified with the

fraction of NMACs prevented. The second goal is to minimize the probability of

deviation from the nominal path. This metric was chosen (as opposed to a metric that

penalizes the size of the deviation) because, in a commercial setting, any deviation

from the normal operating plan might have a large cost in the form of disrupting

schedules, preventing a mission from being completed, or requiring manual human

monitoring. The MDP reward function is designed to encourage the policy towards

a solution that performs well with respect to these goals.

Specifically, the utility associated with an encounter is the sum of the stage-wise

rewards throughout the entire encounter

∞∑
t=0

R(st, at). (2.14)

In order to meet both goals, the stage-wise reward is

R(st, at) :=− cstep + rgoal × in goal
(
s

(o)
t

)
− cdev × causes deviation(st, at)

− λ× is NMAC(st), (2.15)

for positive constants cstep, rgoal, cdev, and λ. The first term is a small constant

cost accumulated in each step to push the policy to quickly reach the goal. The

function in goal indicates that the UAV is within the goal region, so the second term

is a reward for reaching the goal. The third term is a penalty for deviating from

the nominal path. The function causes deviation returns 1 if the action will cause

CHAPTER 2. TRUSTED AND OPTIMIZED UAV COLLISION AVOIDANCE 31

a deviation from the nominal course and 0 otherwise. It will only return 1 if the

vehicle has not previously deviated and dev is false, so the penalty may only occur

once during an encounter. This behavior makes the inclusion of dev in the state

necessary. Constants cstep, rgoal, and cdev represent relative weightings for the terms

that incentivize a policy that reaches the goal quickly and minimizes the probability

of deviation. Example values for these constants are given in Section 2.4. The fourth

term is the cost for a collision. The weight λ balances the two performance goals.

We heuristically expect there to be a value of λ for which the solution to the MDP

meets the desired risk ratio if it is attainable. Bisection, or even a simple sweep of

values can be used to find a suitable value, and this method has been used previously

to analyze the performance of aircraft collision avoidance systems [7, 53].

2.2.7 Problem statement

The problem we consider is to find a feedback control policy π∗ : S → A, mapping

an encounter state st into an action at, that maximizes the expected reward (2.14)

subject to the system dynamics (2.8):

maximize
π

E

[
∞∑
t=0

R(st, π(st))

]
subject to st+1 = F (st, π(st), wt),

(2.16)

for all initial states s0 ∈ S. To make the solution of problem (2.16) practical, we

present an approximate dynamic programming approach that yields a suboptimal

policy, π̃, in the next section.

2.3 Solution Approach

Since the problem (2.16) has continuous state and action spaces and complex dynam-

ics, it is difficult to solve. In order to make it more tractable, two approximations are

used.

First, only a small number of discrete actions, which will be referred to as Ã,

CHAPTER 2. TRUSTED AND OPTIMIZED UAV COLLISION AVOIDANCE 32

are considered. Specifically, for the optimized TRL, direct optimization, and trusted

direct optimization approaches, the following action spaces are used:

ÃD = {DNMAC, 1.5DNMAC, 2DNMAC, 3DNMAC, 4DNMAC} (2.17)

Ãφ =

{
−φmax,−

φmax

2
, 0,

φmax

2
, φmax

}
(2.18)

ÃTφ(s) =
{
φ ∈ Ãφ : dmin (F (s, φ, 0)) > DNMAC

}
. (2.19)

The second approximation is the approximate value iteration algorithm [10] used

to optimize the policy. The value function, V , represents the expected value of the

future reward given that the encounter is in state s and an optimal policy will be

executed in the future. We approximate V with a linear architecture of the form

Ṽ (s) = β(s)>θ, (2.20)

where the feature function β returns a vector of Nβ feature values, and θ ∈ RNβ

is a vector of weights [10]. At each step of value iteration, the weight vector θ is

fitted to the results of a large number of single-step simulations by solving a linear

least-squares problem. After value iteration has converged, Ṽ is used to estimate

a post-decision state value function, Ṽq, which is also approximated using a linear

combination of features. The policy is extracted online in real time by selecting the

action that results in the post-decision state that has the highest value according to

Ṽq. The choice of working with post-decision states will be discussed in Section 2.3.2.

2.3.1 Approximate Value Iteration

The bulk of the computation is carried out offline before vehicle deployment using

simulation. Specifically, the first step is to estimate the optimal value function for

problem (2.16) using value iteration [10]. On a continuous state space such as the

encounter state space used in this work, the Bellman operator used in value itera-

tion cannot be applied for each of the uncountably infinite number of states, so an

approximation must be used.

CHAPTER 2. TRUSTED AND OPTIMIZED UAV COLLISION AVOIDANCE 33

In this paper we adopt projected value iteration [10]. In this algorithm, each

successive value function approximation, Ṽk, is the result of the Bellman operation

projected onto a linear subspace with respect to the Euclidean norm, that is

Ṽk+1(s) = ΠB[Ṽk](s), (2.21)

where B is the Bellman operator, and Π is a projection onto the linear subspace Φ

spanned by the Nβ basis functions (see [10] for a detailed discussion of this approach).

Two important factors that make projected value iteration an attractive option

compared to other approaches, in particular deep reinforcement learning [70], are the

following: First, since it is relatively easy to choose a feature set that yields accept-

able performance by hand (see Section 2.3.4), more flexible function approximation

approaches that also learn features, such as deep neural networks [39], are not nec-

essary. Second, the least squares optimization problem solved at each iteration of

projected value iteration (2.23) requires much less computation than the gradient

descent required to train a neural network.

Monte Carlo simulations are used to perform the approximate value iteration

(2.21). Specifically, for each iteration, Nstate states are uniformly randomly selected.

If the states lie within the grids used in the feature function (see Section 2.3.4) the

sample is “snapped” to the nearest grid point to prevent approximation errors due to

the Gibbs phenomenon [33]. At each sampled state s[n], n = 1, . . . , Nstate, the stage-

wise reward and the expected value of the value function are evaluated for each action

a in Ã. The expectation embedded in the Bellman operator is approximated using

NEV single-step intruder simulations, each with a randomly generated noise value,

wm, m = 1, . . . , NEV. However, since the own UAV dynamics are deterministic, only

one own UAV simulation is needed. The maximum over Ã is selected and stored as

the nth entry of a vector vk+1:

vk+1[n] := max
a∈Ã

{
R(s[n], a) +

1

NEV

NEV∑
m=1

β(F (s[n], a, wm))>θk

}
, (2.22)

for n = 1, . . . , Nstate. Here vk+1 provides an approximation to the (unprojected) value

CHAPTER 2. TRUSTED AND OPTIMIZED UAV COLLISION AVOIDANCE 34

function. To project vk+1 onto Φ, we compute the weight vector θk+1 by solving the

least-squares optimization problem

θk+1 = argmin
θ∈RNβ

Nstate∑
n=1

(
β
(
s[n]
)>
θ − vk+1[n]

)2

. (2.23)

Iteration is terminated after a fixed number of steps, NV I , and the resulting weight

vector, denoted θ, is stored for the next processing step (Section 2.3.2).

2.3.2 Post Decision Value Function Extraction

For reasons discussed in Section 2.3.3, the second step is to approximate a value

function defined over post-decision states [10]. A post-decision state, denoted by q,

is defined as a state in S consisting of the own UAV state and dev at one time step

into the future and the intruder state at the current time, that is

qt =
(
s

(o)
t+1, s

(i)
t , devt+1

)
. (2.24)

Correspondingly, let g : S × A → S be the function that maps the current state

and action to the post-decision state. In other words, function g(st, at) returns qt

consisting of

s
(o)
t+1 = f (o)

(
s

(o)
t , at

)
s

(i)
t = s

(i)
t

devt+1 = max{dev, causes deviation(st, at)}. (2.25)

The approximate value function over post-decision states, Ṽq, is computed as

follows. Let h : S ×R→ S be a function that returns the next encounter state given

the post decision state and intruder heading noise value, that is h(qt, wt) returns st+1

CHAPTER 2. TRUSTED AND OPTIMIZED UAV COLLISION AVOIDANCE 35

consisting of

s
(o)
t+1 = s

(o)
t+1 (2.26)

s
(i)
t+1 = f (i)(s

(i)
t , wt) (2.27)

devt+1 = devt+1, (2.28)

where
(
s

(o)
t+1, s

(i)
t , devt+1

)
are the members of qt.

The value function Ṽq can then be expressed in terms of Ṽ as

Ṽq(q) = E
wt

[
Ṽ (h (q, wt))

]
, (2.29)

where wt denotes, as usual, a random variable with Gaussian normal density. Equa-

tion (2.29) implies that Ṽq can also be approximated according to a linear architecture

Ṽq(q) = β(q)>θq, (2.30)

where β(q) is the feature vector for post-decision states q ∈ S, and θq ∈ RNβ is the

corresponding weight vector.

Specifically, Nq post decision states are randomly selected using the same method

as described in Section 2.3.1 and are denoted as q[n], n = 1, . . . , Nq. For each sampled

state q[n], the expectation in (2.29) is approximated using NEV single-step simulations.

The results are used to solve a least squares optimization problem

θq = argmin
θ∈RNβ

Nq∑
n=1

(
β
(
q[n]
)>
θ − vq[n]

)2

, (2.31)

where

vq[n] :=
1

NEV

NEV∑
m=1

β
(
h
(
q[n], wm

))>
θ, (2.32)

where wm, m = 1, . . . , NEV, is a noise value sampled from the distribution of a random

variable in W .

CHAPTER 2. TRUSTED AND OPTIMIZED UAV COLLISION AVOIDANCE 36

2.3.3 Online Policy Evaluation

The first two steps (explained, respectively, in Sections 2.3.1 and 2.3.2) are performed

offline. The last step, namely policy evaluation, is performed online. Specifically a

suboptimal control at any state s is computed as

π̃(s) = argmax
a∈Ã

Ṽq (g(s, a)) . (2.33)

Since g (defined in (2.25)) is a deterministic function of a state-action pair, this cal-

culation does not contain any computationally costly or difficult-to-certify operations

such as estimating an expectation.

Two comments regarding the motivation for using the post-decision value function

are in order. First, if the value functions could be exactly calculated, the post-decision

state approach would be equivalent to the more common approach wherein a control

is computed by solving

π(s) = argmax
a∈Ã

Q(s, a), (2.34)

In fact, one can readily show Q(s, a) = Vq (g(s, a)). However, when approximations

are used, post-decision states provide a more robust (i.e., less susceptible to approxi-

mation error) way of deriving control actions [10]. One reason for this is that the cost

function is approximated in the space of post-decision states, rather than in the larger

space of state-control pairs, and hence the post-decision method is less susceptible to

complications with inadequate exploration [10].

Second, the post decision value function is not used for the value iteration portion

of the offline solution as it would require full simulations of both the own UAV and

the intruder dynamics and, therefore, would be more computationally demanding.

2.3.4 Selection of Features

The primary value function approximation features are the interpolation weights for

points in a grid [24]. A grid-based approximation is potentially inefficient compared

CHAPTER 2. TRUSTED AND OPTIMIZED UAV COLLISION AVOIDANCE 37

to a small number of global features (e.g. heading, distance, and trigonometric func-

tions of the variables), however, it is well known that the function approximation

used in value iteration, must have suitable convergence properties [13] in addition

to approximating the final value function. Indeed, experiments with a small number

of global features were attempted, but they did not achieve convergence, and a grid

approach was adopted instead. Since a grid defined over the entire six dimensional

encounter state space with a reasonable resolution would require far too many points

to be computationally feasible, the grid must be focused on important parts of the

state space.

Our strategy is to separate features into two groups (along with a constant),

specifically

β(s) = [βintruder(s
(o) − s(i)), βgoal(s

(o)), 1]. (2.35)

The first group, βintruder, captures the features corresponding to a near midair collision

and is a function of only the position and orientation of the own vehicle relative to

the intruder. The second group, βgoal, captures the value of being near the goal and

is a function of only the own vehicle state.

Since the domain of βintruder is only three dimensional and the domain of βgoal is

only two dimensional, relatively fine interpolation grids can be used for value function

approximation without requiring a prohibitively large number of features. The βintruder

feature group consists of a NMAC indicator function and interpolation weights for

a grid (Figure 2.2) with nodes at regularly spaced points along the following three

variables: (1) the distance between the UAV and intruder, (2) the bearing from the

intruder to the UAV, and (3) the relative heading between the vehicles. The βgoal

vector consists of a goal indicator function, the distance between the UAV and the

goal, and interpolation weights for a grid (Figure 2.3) with nodes regularly spaced

along the distance between the UAV and the goal and the absolute value of the

bearing to the goal from the UAV. The total number of features is Nβ = 1813.

CHAPTER 2. TRUSTED AND OPTIMIZED UAV COLLISION AVOIDANCE 38

800 600 400 200 0 200 400 600 800

y (east)

0

200

400

600

800

1000

x
 (

n
o
rt

h
)

Intruder

Intruder
D
is
ta

nce

Bearing

Relative Heading

Own UAV

Figure 2.2: Intruder interpolation grid for βintruder, visualized when the intruder is
located at (700 m, −250 m) at heading 135. The top left inset shows the variables
used. In the main plot, each of the small arrows represents a grid point. At each of the
point locations, there are twelve small arrows radiating out. Each arrow represents a
different UAV heading.

CHAPTER 2. TRUSTED AND OPTIMIZED UAV COLLISION AVOIDANCE 39

800 600 400 200 0 200 400 600 800

y (east)

400

600

800

1000

1200

1400

1600

x
 (

n
o
rt

h
)

Own UAV
D
is
ta

nce

Bearing

Goal

Goal

Figure 2.3: Goal interpolation grid for βgoal when the own UAV’s heading is directly
north. The grid takes advantage of symmetry in the bearing variable, so, for each
arrow on the left side, there is an arrow on the right side that corresponds with the
same point in the grid.

CHAPTER 2. TRUSTED AND OPTIMIZED UAV COLLISION AVOIDANCE 40

2.4 Results

This section presents results from numerical experiments that illustrate the effec-

tiveness of the new approach. The experiments are designed to compare the four

approaches discussed in Section 2.1: the “static TRL” approach, “direct optimiza-

tion”, and the new “optimized TRL” and “trusted direct optimization” approaches

proposed in this chapter. The static TRL control law uses the TRL described in

Algorithm 1 with a constant value for the separation distance (denoted with D̄),

while the other approaches use the approximate optimization procedure described in

Section 2.3. The various parameters used in the numerical experiments are listed in

Table 2.1.

2.4.1 Policies

This section includes visualizations of two-dimensional “slices” of several UAV policies

and their associated value functions. In each of the slices, the intruder is located at

(700 m, −250 m) pointed at heading 135 as indicated by the arrow. The goal is at

(1000 m, 0). Each pixel on this image represents the value function or policy evaluated

with the UAV at that position pointed directly north. As expected, for all approaches,

there is a low value region in front of and to the south of the intruder and a high

value region near the goal.

Figures 2.4a and 2.4b show the value function and policy for the directly optimized

approach, and Figs. 2.4c and 2.4d show the same for the trusted directly optimized

approach. The policies for both approaches are similar, with regions in front of the

intruder where sharp turns are commanded. The trusted direct optimization policy

is slightly more conservative with larger turn regions because of the restricted action

space.

Figure 2.4f shows the value function and policy for the optimized TRL approach.

When multiple actions result in the same post decision state value, the least conser-

vative action is chosen, so the policy yields the lowest value of D (500ft ≈ 152.4m)

on most of the state space. Because the own UAV is pointed north, the policy is

CHAPTER 2. TRUSTED AND OPTIMIZED UAV COLLISION AVOIDANCE 41

600 400 200 0 200 400 600
y (east)

0

200

400

600

800

1000

x
(n

or
th

)

250

200

150

100

50

0

50

100

(a) Slice of the approximate optimal value
function for direct optimization.

600 400 200 0 200 400 600
y (east)

0

200

400

600

800

1000

x
(n

or
th

)

= 0.0

= 45.0

= 45.0

= 22.5

= 22.5

(b) Slice of the direct optimization policy.

600 400 200 0 200 400 600
y (east)

0

200

400

600

800

1000

x
(n

or
th

)

250

200

150

100

50

0

50

100

(c) Slice of the approximate optimal value
function for trusted direct optimization.

600 400 200 0 200 400 600
y (east)

0

200

400

600

800

1000

x
(n

or
th

)

= 0.0

= 45.0

= 45.0

= 22.5

= 22.5

(d) Slice of the trusted direct optimization
policy.

600 400 200 0 200 400 600

y (eas t)

0

200

400

600

800

1000

x
 (

n
o

rt
h

)

1050

900

750

600

450

300

150

0

(e) Slice of the approximate optimal value
function for the optimized TRL.

600 400 200 0 200 400 600
y (east)

200

0

200

400

600

800

1000

x
 (

n
o
rt

h
)

D=152.4

D=228.6

D=304.8

D=457.2

D=609.6

(f) Slice of the optimized TRL policy.

Figure 2.4: UAV Collision avoidance policy visualizations

CHAPTER 2. TRUSTED AND OPTIMIZED UAV COLLISION AVOIDANCE 42

conservative in a region in front of and to the south of the intruder. The band corre-

sponding to small D that stretches across the middle of the conservative region (from

(700 m,−250 m) to (−100 m,200 m)) is present because all values of D result in the

same post decision value.

2.4.2 Numerical Performance Evaluation

The control polices are evaluated by executing them in a large number of complete

(from t = 0 to the end state) encounter simulations. The same random numbers

used to generate intruder noise were reused across all collision avoidance strategies

to ensure fairness of comparisons. In each of the simulations, the own UAV starts

pointed north at position (0, 0) in a north-east coordinate system with the goal at

(1000m, 0).

The evaluation simulations use the same intruder random turn rate model with

standard deviation σψ̇ that was used for value iteration. A robustness study using

different models is not presented here, but previous research [55] suggests that this

method will offer good performance when evaluated against both a range of noise pa-

rameters and structurally different models. The intruder initial position is randomly

generated between 800 m and 1500 m from the center point of the encounter area at

(500m, 500m) with an initial heading that is within 135◦ of the direction from the

initial position to the center point.

The conservativeness of each control law is characterized by counting the number

of deviations from the nominal path in 10,000 simulations with initial conditions

shown in Fig. 2.5. Of these simulations, 1009 result in a NMAC if the UAV follows its

nominal path, but for most a deviation would not be necessary to avoid the intruder.

The fraction of collisions avoided is estimated using a separate set of 10,000 simu-

lations. Each of these simulations has an initial condition in the same region described

above, but initial conditions and noise trajectories are chosen by filtering random tri-

als so that each of the simulations will result in a NMAC if the own UAV follows its

nominal path.

Figure 2.6 shows the Pareto optimal frontiers for the different control laws. Each

CHAPTER 2. TRUSTED AND OPTIMIZED UAV COLLISION AVOIDANCE 43

Figure 2.5: Intruder initial conditions for evaluation simulations. Each small black
arrow is an intruder initial state. The large green arrow is the UAV’s initial state.
The red dot is the goal.

CHAPTER 2. TRUSTED AND OPTIMIZED UAV COLLISION AVOIDANCE 44

0.88 0.9 0.92 0.94 0.96 0.98
0.45

0.5

0.55

0.6

0.65

0.7

0.75

Fraction of NMACs Prevented

F
ra
ct
io
n
w
it
h
ou

t
D
ev
ia
ti
on

Direct Optimization
Optimized TRL
Trusted Direct Optimization
Static TRL

Figure 2.6: Policy performance comparison. The values of λ used to generate the
datapoints are 100, 316, 1000, 3160, 104, and 3.16× 104 for the optimized TRL policy
and 300, 500, 700, 1000, and 1500 for the directly optimized approach. The values of
D̄ for the static TRL policy are 250 m, 300 m, 350 m, 400 m, and 500 m.

CHAPTER 2. TRUSTED AND OPTIMIZED UAV COLLISION AVOIDANCE 45

Table 2.1: Parameters for numerical experiments

Description Symbol Value

Own UAV speed v(o) 30 m/s
Maximum own UAV bank angle φmax 45◦

Intruder speed v(i) 60 m/s
Intruder turn rate standard deviation σψ̇ 10◦/s

Near mid air collision radius DNMAC 500 ft
Step cost cstep 1
Reward for reaching goal rgoal 100
Cost for deviation cdev 100
Step simulations for expectation estimate NEV 20
Single step simulations per round of value iteration
(optimized TRL)

Nstate 10,000

Single step simulations per round of value iteration
(directly optimized)

Nstate 50,000

Number of value iteration rounds NV I 35
Single step simulations for post decision value func-
tion extraction

Nq 50,000

curve is generated by using various values of λ in the reward function of the MDP,

or by using various static values of D̄ in the static TRL case. It is clear that the

optimization provides better performance than the static TRL. For example, if the

desired fraction of NMACs prevented is 96%, interpolation between data points sug-

gests that direct optimization will cause approximately 20% fewer deviations than the

static TRL policy. This difference may be interpreted as the price if using trusted

resolution logic rather than optimization.

Fortunately, both the optimized TRL and trusted direct optimization approaches

offer ways to reduce this price. Neither should be much more difficult to certify than

the TRL because they are both based on the TRL. In particular, neither will ever

command an action that is deemed unsafe by the TRL. Thus, they provide the same

level of trust as the TRL and thus reduce the price of trust. In this case, trusted

direct optimization is able to nearly close the gap between static TRL and direct

optimization, while optimized TRL reduces the gap by about half, so trusted direct

optimization would be the preferred approach.

CHAPTER 2. TRUSTED AND OPTIMIZED UAV COLLISION AVOIDANCE 46

The software used to simulate these experiments was written in the Julia program-

ming language, and is freely available at https://github.com/zsunberg/UASEncounter.

2.5 Discussion

This chapter has explored using trusted resolution logic alongside approximate opti-

mization to produce a high performance collision avoidance system for UAV that is

also relatively easy to certify. Due to flight performance and regulatory constraints,

only horizontal maneuvers are considered when resolving potential collisions and the

intruding aircraft is presumed to be unaware of the UAV. This problem is formulated

as a Markov decision process. It is solved using an approximate value iteration ap-

proach. This general approach is widely used [52], though problems of this size are

still challenging to handle. By choosing appropriate features and using a post-decision

state, the method is made tractable for this problem.

Using simple trusted resolution logic that guarantees a separation distance D if

the intruder maintains its current heading is an alternate approach. This approach

has the advantage that it can be easily certified because, by construction, it will

never command a heading that is considered dangerous. However, when this TRL is

compared to an approximate dynamic programming solution to the MDP, it is too

conservative, causing unnecessary disruption to normal flight. These tests demon-

strate that there is a price that comes with certifiability and trustworthiness, and

the performance gap between the approaches quantifies this price. Two alternative

combinations of approximate dynamic programming and the TRL are considered as

ways to reduce the price.

First, approximate dynamic programming is applied to dynamically choose D

within a certified range based on the encounter state. Since every potential action

is pre-certified, this approach retains the ease of certification of the TRL approach.

However, since this new action space is relatively limited, it only reduces the price by

about half.

The second approach is to filter the original action space of turning maneuvers

CHAPTER 2. TRUSTED AND OPTIMIZED UAV COLLISION AVOIDANCE 47

through the TRL so that the UAV may only take actions that will maintain D sepa-

ration based on the current state. This approach should also be easy to certify, and

it largely closes the performance gap, nearly eliminating the price of certifiability.

There are many potential extensions for this work. First, the function approxi-

mation for the value iteration could be improved. The feature-based approach used

here worked well, but the selection of the features was mostly heuristically justified,

and another more advanced and general approximation technique such as neural net-

works [39] may work better. Most importantly, the uncertainty model should be

improved. The current model was not justified with data, and it is extremely unlikely

that a Gaussian noise model reflects real intruder behavior. It is much more plausible

that the intruder has an operational intention unknown to the UAV which should be

modeled as a hidden state in the problem. It is not immediately clear how to solve

the resulting POMDP offline, but a QMDP approach using the MDP solution found

in this work may be adequate. This concept of a hidden internal state governing the

behavior of other agents is investigated in the next chapter, but in a different context:

self-driving cars.

Chapter 3

Planning with Internal States in

Driving

The second investigation of this thesis is in the area of autonomous driving. Chapter 2

focuses on finding the best way to integrate certifiable safety constraints, but uses

a simplistic stochastic model for the intruder the UAV interacts with. This chapter

keeps the safety constraint architecture discovered in the last chapter as a constraint

on the action space that guarantees there will be no crashes (Section 3.2.3), but the

chapter focuses primarily on investigating a richer stochastic model. In particular,

it demonstrates the advantage of using a model with other agents’ internal states

represented using state uncertainty in the problem formulation.

3.1 Human Interaction in Autonomous Driving

One challenge in introducing autonomous automobiles is ensuring that they interact

safely with human drivers. In order to navigate complex driving scenarios, human

drivers routinely predict what other drivers will do and make driving decisions based

on these predictions. Autonomous vehicles typically take an overly conservative ap-

proach, which can result in physical danger, reduced efficiency, and an uncomfortable

experience. In a 2015 study, autonomous vehicles drove over 1.2 million miles without

48

CHAPTER 3. PLANNING WITH INTERNAL STATES IN DRIVING 49

being legally responsible for any accidents. However, the autonomous vehicles actu-

ally had a higher accident rate than average for a conventional vehicle in the United

States because of accidents for which they were not legally responsible [89]. This

result suggests that there is significant room for improvement in autonomous-human

vehicle interaction.

One approach to improve interaction would be to program ad-hoc logic for each

situation into the vehicles. However, this approach is time-consuming and error prone,

and edge cases that the programmers have not foreseen can present a safety risk.

Furthermore, this approach limits the performance of the system to the capability

of the human programmer. In contrast, artificial intelligence and machine learning

techniques have the potential to provide a more robust approach to such decision-

making tasks. This chapter explores MDP and POMDP techniques.

POMDPs are particularly well suited for modeling decisions for autonomous ve-

hicles because they explicitly capture the limitations of the vehicle’s sensors in mea-

suring the relevant state variables [15, 84, 6]. Though sensors can accurately measure

many of the relevant variables pertaining to the physical state of the vehicles, the

internal state (e.g., intentions and aggressiveness) of other drivers and road users can

only be indirectly inferred [84, 6, 61, 29]. The hypothesis explored in this chapter

is that inferring and planning with an estimate of the internal states of the traffic

participants will improve safety and efficiency.

Driving strategies derived from MDPs and POMDPs depend on several ingredients

to be successful. First, an accurate stochastic model of the environment, including

the behavior of other drivers, is necessary. Though this chapter uses a very simple

model, there has been significant work on creating better models in recent years [36,

110, 82], and the POMDP planning methods used here can be adapted to use these

new models.

Before investing the effort required to develop and test a POMDP-based decision

making system for real autonomous vehicles, it is important to quantify the potential

performance improvement. This chapter presents a method that involves comparing

solutions obtained from several variations of Monte Carlo Tree Search [17]. For this

research, these ideas are investigated in the context of making lane changes on a

CHAPTER 3. PLANNING WITH INTERNAL STATES IN DRIVING 50

Figure 3.1: The example decision making scenario for this chapter. An autonomous
vehicle (bottom center) must travel from the rightmost to leftmost lane within a
limited distance.

freeway. This situation that has been anecdotally noted to be difficult [73], and a

good candidate for improvement by reasoning about the actions of other drivers. For

instance, a 2016 Google report noted that “merging into traffic during rush hour is

an exercise in negotiation.” [26].

The experiments in this chapter are conducted as follows: First, as a baseline for

evaluation, the performance gains that would result from perfect estimation of and

planning with internal states are estimated. Next, simulations evaluate whether a par-

ticle filter can be used to estimate internal parameters using physical measurements.

Finally, the performance gain from using QMDP and POMDP problem formulations

to plan with these internal state estimates is assessed.

3.2 Freeway Driving POMDP

The focus of this chapter is on freeway driving. In the scenario studied here, a vehicle

must navigate from the rightmost to the leftmost lane of a four lane freeway within

a specified distance while maintaining safety and comfort (see Fig. 3.1).

Throughout this section, x denotes position in the longitudinal direction, that is,

the direction that the cars move along the road in meters, and y denotes position in

the lateral direction, that is, the lane the car occupies in lane units. The problem can

be stated as a discrete-time POMDP defined by the tuple (S,A, T ,R,O,Z), which

consists of

CHAPTER 3. PLANNING WITH INTERNAL STATES IN DRIVING 51

• The state space, S: A system state,

s = (q0, {(qi, θi)}i∈1..N) ∈ S,

consists of the physical state of the ego vehicle (q0), and physical state and

behavior model for each of the N other cars in the scene. The physical state,

qi = (xi, yi, ẋi, ẏi),

consists of the car’s longitudinal and lateral position and velocity. The internal

state (behavior model parameters), θi, is drawn from a set of behaviors Θ.

• The action space, A: An action, u = (ẍe, ÿe) ∈ A, consists of the longitudinal

acceleration and lateral velocity of the ego vehicle. The action space is discrete

and pruned to prevent crashes (see Section 3.2.3).

• The state transition model, T : S × A × S → R: The value T (s, u, s′) is

the probability of transitioning to state s′ given that action u is taken by the

ego at state s. This function is implicitly defined by a generative model that

consists of a state transition function, F (·), and a stochastic noise process (see

Section 3.2.2).

• The reward model, R : S × A × S → R: The reward function, defined in Sec-

tion 3.2.4, rewards reaching the left lane within the distance limit and penalizes

unsafe actions.

• The observation space, O: An observation, o ∈ O consists of the physical states

of all of the vehicles, that is o = {qi}i∈1..N . No information about the internal

state is directly included in the observation.

• The observation model, Z : S × O → R: The value Z(s′, o) is the probability

of receiving observation o when the system transitions to state s′. In these

experiments, the physical state is assumed to be known exactly, though it is

not difficult to relax this assumption.

CHAPTER 3. PLANNING WITH INTERNAL STATES IN DRIVING 52

The remainder of this section elaborates on this model.

3.2.1 Driver Modeling

The driver models for each car have two components: an acceleration model that

governs the longitudinal motion and a lane change model that determines the lateral

motion. In this chapter, the acceleration model is the Intelligent Driver Model (IDM)

[106], and the lane change model is the “Minimizing Overall Braking Induced by

Lane change” (MOBIL) model [50]. Both of these models have a small number of

parameters that determine the behavior of the drivers. The distribution of these

parameters in the population of vehicles will be denoted Θ.

IDM

The IDM Model was developed as a simple model for “microscopic” simulations of

traffic flows and is able to reproduce some phenomena observed in real-world traffic

flows [106]. It determines the longitudinal acceleration for a human-driven car, ẍ,

based on the desired distance gap to the preceding car, g, the absolute velocity, ẋ,

and the velocity relative to the preceding car ∆ẋ. The longitudinal acceleration is

governed by the following equation:

ẍIDM = a

[
1−

(
ẋ

ẋ0

)δ
−
(
g∗(ẋ,∆ẋ)

g

)2
]

, (3.1)

where g∗ is the desired gap given by

g∗(ẋ,∆ẋ) = g0 + T ẋ+
ẋ∆ẋ

2
√
ab

. (3.2)

Brief descriptions and values for the parameters not defined here are provided later

in Table 3.1.

A small amount of noise is also added to the acceleration

ẍ = ẍIDM + w, (3.3)

CHAPTER 3. PLANNING WITH INTERNAL STATES IN DRIVING 53

where w is a random variable with a triangular distribution with support between

−a/2 and a/2. In cases where the noise might cause a hard brake or lead to a state

where a crash is unavoidable, the distribution is scaled appropriately.

MOBIL

The MOBIL model makes the decision to change lanes based on maximizing the ac-

celeration for the vehicle and its neighbors. When considering a lane change, MOBIL

first ensures that the safety criterion ˜̈xn ≥ −bsafe, where ˜̈xn will be the acceleration

of the following car if the lane change is made and bsafe is the safe braking limit. It

then makes the lane change if the following condition is met

˜̈xc − ẍc + p
(
˜̈xn − ẍn + ˜̈xo − ẍo

)
> ∆ath (3.4)

where the quantities with tildes are calculated assuming that a lane change is made,

the quantities with subscript c are quantities for the car making the lane change

decision, those with n are for the new follower, and those with o are for the old

follower. The parameter p ∈ [0, 1] is the politeness factor, which represents how

much the driver values allowing other vehicles to increase their acceleration. The

parameter ∆ath is the threshold acceleration increase to initiate a lane changing

maneuver. Parameter values are listed in Table 3.1.

3.2.2 Physical Dynamics

The physical dynamics are simplified for the sake of computational efficiency. Time is

divided into discrete steps of length ∆t. The longitudinal dynamics assume constant

acceleration, and the lateral dynamics assume constant velocity over a time step, that

is

x′ = x+ ẋ∆t+
1

2
ẍ∆t2

ẋ′ = ẋ+ ẍ∆t

y′ = y + ẏ∆t .

CHAPTER 3. PLANNING WITH INTERNAL STATES IN DRIVING 54

There is a physical limit to the braking acceleration, bmax. Lateral velocity is

allowed to change instantly because cars on a freeway can achieve the lateral velocity

needed for a lane change in time much shorter than ∆t by steering. If MOBIL

determines that a lane change should be made, the lateral velocity, ẏ, is set to ẏlc.

Lane changes are not allowed to reverse. Once a lane change has begun, ẏ remains

constant until the lane change is completed (this is the reason that ẏ is part of

the state). When a vehicle passes over the midpoint of a lane, lateral movement is

immediately stopped so that lane changes always end at exactly the center of a lane.

Since MOBIL only considers cars in adjacent lanes, there must be a coordination

mechanism so that two cars do not converge into the same lane simultaneously. In

order to accomplish this, if two cars begin changing into the same lane simultaneously,

and the front vehicle is within g∗ of the rear vehicle, the rear vehicle’s lane change is

canceled.

In order to reduce the computational demands of decision-making, only 50 m of

road in front of the ego and 50 m behind are modeled. Thus, a model for vehicle

entry into this section is needed. If there are fewer than Nmax vehicles on the road, a

new vehicle is generated. First, a behavior for the new vehicle is drawn from Θ, and

the initial speed is set to ẋ0 +σvelw0, where ẋ0 is the desired speed from the behavior

model and w0 is a zero-mean, unit-variance, normally distributed random variable

that is independent for each car. If this speed is greater than the ego’s speed, the

new vehicle will appear at the back of the road section; if it is less, it will appear at

the front. For each lane, g∗ is calculated, either for the new vehicle if the appearance

is at the back or for the nearest following vehicle if the appearance is at the front.

The new vehicle appears in the lane where the clearance to the nearest car is greatest.

If no clearance is greater than g∗, the new vehicle does not appear.

Once the ego reaches the target lane (y = ytarget) or passes the distance limit

(x ≥ L), the problem terminates.

For convenience, throughout this chapter, the behavior described so far will be

denoted compactly by the state transition function

s′ = F (s, u, w) . (3.5)

CHAPTER 3. PLANNING WITH INTERNAL STATES IN DRIVING 55

accelerateaccelerateacceleratebrakebrakebrake deceleratedeceleratedecelerate

lanelanelane
changechangechange
leftleftleft

lanelanelane
changechangechange
rightrightright

accelerateaccelerateaccelerate
and laneand laneand lane
change leftchange leftchange left

accelerateaccelerateaccelerate
and laneand laneand lane

change rightchange rightchange right

deceleratedeceleratedecelerate
and laneand laneand lane
change leftchange leftchange left

deceleratedeceleratedecelerate
and laneand laneand lane

change rightchange rightchange right

Figure 3.2: Lane changing action space

3.2.3 Action Space for Crash-Free Driving

At each time step, the planner for the ego must choose the longitudinal and lateral

acceleration. For simplicity, the vehicle chooses from up to ten discrete actions which

are shown in Fig. 3.2. The vehicle may make an incremental decrease or increase in

speed or maintain speed, and it may begin a left or right lane change or maintain

the current lane. The combination of these adjustments make up nine of the actions.

The final action is a braking action determined dynamically based on the speed

and position of the vehicle ahead. In most cases, the acceleration for this action

is a nominal value, −bnominal, but this is sometimes overridden. At each time step,

the maximum permitted acceleration, amax, is the maximum acceleration that the

ego could take such that, if the vehicle ahead immediately begins braking at the

physical limit, bmax, to a stop, the ego will still be able to stop before hitting it

without exceeding physical braking limits itself. The braking action is (ẍe, ÿe) =

(min{amax,−bnominal}, 0).

The inclusion of the dynamic braking action guarantees that there will always

be an action available to the ego to avoid a crash. At each step, the action space

is pruned so that if ẍe > amax or if a lane change leads to a crash, that action is

not considered. Since the IDM and MOBIL models are both crash-free [51], and

actions that lead to crashes for the ego are not considered, no crashes occur in the

simulation. Eliminating crashes in our model is justifiable because it is likely that in

an actual autonomous vehicle a high-level planning system would be augmented with

a low-level crash prevention system to increase safety and facilitate certification. In

CHAPTER 3. PLANNING WITH INTERNAL STATES IN DRIVING 56

addition, it is difficult to model driver behavior in the extraordinary case of a crash.

3.2.4 Reward Function and Objectives

The qualitative objectives in solving this problem are to reach the target lane within

a specified distance, L, and maintain the comfort and safety of both the ego and

the other nearby vehicles. Thus, the following two metrics will be used to evaluate

planning performance: 1) the fraction of episodes in which the ego reaches the target

lane, and 2) the fraction of episodes in which any vehicle operates in an unsafe manner.

For this work, hard braking and unusually slow velocity are considered unsafe. A hard

braking maneuver is defined as ẍ < −bhard and slow velocity as ẋ < ẋslow, where bhard

and ẋslow are chosen to be uncomfortably abrupt deceleration or slow travel that might

result in an accident in real conditions (see Table 3.2). In addition to quantifying

safety, hard braking also serves as a proxy for comfort.

In order to encourage the planner to choose actions that will maximize these

metrics, the reward function for the POMDP is defined as follows:

R(s, a, s′) = in goal(s′)− λ (any hard brakes(s, s′) + any too slow(s′)) (3.6)

where

in goal(s′) = 1(ye = ytarget, xe ≤ L), (3.7)

any hard brakes(s, s′) = max
i∈1..N

{1(ẋ′i − ẋi < −bhard∆t)}, (3.8)

any too slow(s′) = max
i∈1..N

{1(ẋi < ẋslow)}. (3.9)

That is, there is a positive reward for reaching the target lane within the distance

limit, and hard brakes and slow velocity for any car are penalized. The weight λ

balances the competing goals and can be adjusted to create an approximate curve of

Pareto-optimal solutions.

CHAPTER 3. PLANNING WITH INTERNAL STATES IN DRIVING 57

3.2.5 Initial Scenes

Initial scenes for the simulations are generated by beginning a simulation with only

the ego on the road section and then simulating 200 steps to allow other vehicles to

accumulate in the scene.

3.3 Solution Approaches

Each of the solution techniques is based on MCTS-DPW (Section 1.2.6), but handles

uncertainty in the internal states differently.

3.3.1 Approach 1: Assume normal behavior

The first performance baseline is established by planning as if all cars behave according

to a single static “normal” internal state (see Table 3.1). In this case, the problem is

an MDP, which is solved using the MCTS-DPW algorithm. This is an overconfident

baseline — it plans assuming it knows more about the other drivers than is justified

by the information it has collected.

3.3.2 Approach 2: Model all uncertainty as outcome uncer-

tainty (Naive MDP)

The second performance baseline is established by planning as if all uncertainty is

simply outcome uncertainty, that is, as if the problem were an MDP with a state

consisting only of the physical state and the internal states random variables, in-

dependent at each timestep, distributed according to the internal state distribution

Θ. This model would be the result of fitting a Markov model with only the physical

state based on data from all drivers. The MDP is again solved using the MCTS-DPW

algorithm. This is a conservative baseline — it plans assuming it can learn nothing

new about the drivers.

CHAPTER 3. PLANNING WITH INTERNAL STATES IN DRIVING 58

3.3.3 Approach 3: Mean Model Predictive Control

Since information about a human’s internal state can be inferred by observing a

car’s physical motion, performance superior to either of the baselines can be achieved

by estimating θ online. This is accomplished with a particle filter (Section 1.2.7).

Filtering is independent for each car, but all of the behavior parameters for a given

car are estimated jointly. There are two versions of the filter. In the first version,

a particle, θ̂, consists of values of all model parameters. In the second version, all

parameters are assumed perfectly correlated (see Section 3.4.1), so a particle consists

of only a single value, the “aggressiveness”.

The belief at a given time consists of the exactly known physical state, q, and

a collection of M particles, {θ̂k}Mk=1, along with associated weights, {W k}Mk=1. To

update the belief when action u is taken, M new particles are sampled with probability

proportional to the weights, and sampled noise values {ŵk}Mk=1 are used to generate

new states according to ŝk ′ = F ((q, θ̂k), u, ŵk). The new weights are determined by

approximating the conditional probability of the particle given the observation:

W k ′ =

max

{
0,

a−2 |ẋ′−ˆ̇x′|
a

}
if y′ = ŷ′

γlane max

{
0,

a−2 |ẋ′−ˆ̇x′|
a

}
o.w.

 ∝∼ Pr
(
θ̂k
∣∣∣ o)

where ẋ′ and y′ are taken from the observation, ˆ̇x′ and ˆ̇y′ are from ŝk ′, the max ex-

pression is proportional to the probability density of the acceleration noise triangular

distribution, and γlane ∈ [0, 1] is a hand-tuned parameter that penalizes incorrect lane

changes (see Table 3.2).

Model predictive control (MPC) is a widely used family of control techniques that

use an imperfect model and feedback measurements to choose actions [34]. At each

time step, a model predictive controller calculates a sequence of control actions that

will maximize a reward function of the states visited up to a future horizon given that

the system behaves according to a model. The first control action in this optimized

sequence is executed, and the process is repeated after a new measurement is received.

In the mean model predictive control (MMPC) approach, this particle filter is

CHAPTER 3. PLANNING WITH INTERNAL STATES IN DRIVING 59

used to estimate the internal state for each driver. At each step, MPC uses the MDP

that results from assuming that each driver has the internal state corresponding to

the mean of the particles in the belief approximation as the model for planning. Each

time a new observation is received, the particle filter is updated and MCTS-DPW

determines the best action for the resulting MDP.

3.3.4 Approach 4: QMDP

The fourth approach uses MCTS-DPW to solve the QMDP approximation of the

POMDP (see Section 1.2.9).

3.3.5 Approach 5: POMCPOW

The final approach uses the POMCPOW solver described in Section 4.2.3. Though

there is no theoretical guarantee that this approach will converge to an optimality,

this is the closest approximation to the exact POMDP solution.

3.4 Results

The computational results from this study are designed to meet the two goals of 1)

quantifying the size of the gap between the baseline control algorithm and the max-

imum potential lane change performance and 2) showing which cases internal state

estimation and POMDP planning can approach the upper bound on performance.

Experiments are carried out in three scenarios, each with a different distribution of

internal states. In each of these scenarios, each of the approaches described in Sec-

tion 3.3 are compared with an approximate upper performance bound obtained by

planning with perfect knowledge of the behavior models.

CHAPTER 3. PLANNING WITH INTERNAL STATES IN DRIVING 60

3.4.1 Driver Model Distribution Scenarios

For the numerical testing, three internal state distribution scenarios were considered.

In all of these scenarios, drivers behave according to the IDM and MOBIL mod-

els presented in Section 3.2.1, however the IDM and MOBIL parameter values are

distributed differently.

Table 3.1 shows typical parameter values for aggressive, timid, and normal drivers.

The values are taken from Kesting, Treiber, and Helbing [51], but some have been

adjusted slightly so that the parameters for the normal driver are exactly half way

between values for the timid and aggressive drivers. In all three of the scenarios,

the marginal distributions of the parameters are uniformly distributed between the

aggressive and timid values.

The difference between the scenarios is the correlation of the parameter values.

In order to maintain consistent marginal distributions while varying the correlation,

copulas are used. A copula is a multivariate distribution with uniform marginal distri-

butions, but a joint distribution that causes the variables to have nonzero correlation

[74]. An n-dimensional Gaussian copula is defined by a correlation matrix, Σ, and

has a cumulative distribution function defined as follows:

FGC(x) = ΦΣ(Φ−1(x1), ...,Φ−1(xn)), (3.10)

where ΦΣ is the cumulative distribution function for a multivariate Gaussian distri-

bution with covariance Σ, and Φ−1 is the inverse cumulative distribution function for

a univariate Gaussian distribution. If random vector X has cumulative distribution

function FGC, then for any i, j ∈ 1..n, i 6= j, the correlation between Xi and Xj is Σij.

In Scenario 1, all of the parameters are independently distributed. In Scenario 2,

all of the parameters are perfectly correlated so that all parameters are deterministic

functions of a single uniformly-distributed random variable, the “aggressiveness” of

the driver. In Scenario 3, the distribution is correlated between these two extremes.

CHAPTER 3. PLANNING WITH INTERNAL STATES IN DRIVING 61

Specifically, it is a Gaussian copula with covariance matrix

Σ =

1 ρ . . . ρ

ρ 1
...

. . .
...

1 ρ

ρ . . . ρ 1

, (3.11)

that is, a matrix with 1 along the diagonal and correlation parameter ρ elsewhere.

The values drawn from this distribution are scaled and translated to lie between the

aggressive and normal limits.

For Scenario 3, the value of ρ is 0.75, and Scenarios 1 and 2 can be thought of

as limiting cases where ρ approaches 0 and 1, respectively. In Scenarios 1 and 3, the

first version of the particle filter, which estimates all of the model parameters jointly,

is used, whereas in Scenario 2, the second version of the particle filter that assumes

fully correlated parameters is used, that is, it only estimates a single “aggressiveness”

parameter for each car. The mean MPC planner uses this “aggressiveness” parameter

for all scenarios because this resulted in better performance. The small scatter plots

in Figs. 3.3 and 3.4 illustrate the level of correlation by plotting sampled values of

two of the parameters.

Table 3.1: IDM and MOBIL parameters for different driver types.

IDM Parameter Timid Normal Aggressive

Desired speed (m/s) ẋ0 27.8 33.3 38.9
Desired time gap (s) T 2.0 1.5 1.0
Jam distance (m) g0 4.0 2.0 0.0
Max acceleration (m/s2) a 0.8 1.4 2.0
Desired deceleration (m/s2) b 1.0 2.0 3.0

MOBIL Parameter Timid Normal Aggressive

Politeness p 1.0 0.5 0.0
Safe braking (m/s2) bsafe 1.0 2.0 3.0
Acceleration threshold (m/s2) athr 0.2 0.1 0.0

CHAPTER 3. PLANNING WITH INTERNAL STATES IN DRIVING 62

Table 3.2: Various simulation parameters

Parameter Symbol Value

Simulation time step ∆t 0.75 s
Max vehicles on road Nmax 10
Lane change rate ẏlc 0.67 lanes/s
Distance limit L 1000 m
Velocity noise standard deviation σvel 0.5 m/s
Physical braking limit bmax 8.0 m/s2

Penalized hard braking limit bhard 4.0 m/s2

Penalized minimum speed ẋslow 15 m/s
UCT exploration parameter c 8
DPW linear parameter k 4.5
DPW exponent parameter α 0.1
MCTS search depth 40
MCTS iterations per step 1000
Particle filter wrong lane factor γlane 0.05
Number of Particles (Joint Parameter Filter) M 5000
Number of Particles (Aggressiveness Filter) M 2000
Reward ratios for points on approximate Pareto curves λ 0.5, 1, 2, 4, 8

CHAPTER 3. PLANNING WITH INTERNAL STATES IN DRIVING 63

3.4.2 Pareto Front Comparison

Figures 3.3 and 3.4 show approximate Pareto fronts illustrating the performance in

terms of safety and efficiency of each of the approaches described in Section 3.3. Each

of the points on the curve shows the results of 5000 independent simulations of the

scenario with a particular safety-efficiency tradeoff weight, λ.

The baseline and upper bound approaches perform as expected. The baseline

planner that assumes all vehicles act with normal behavior parameters creates over-

confident plans. That is, it is able to reach the goal a large proportion of the time, but

it causes many safety violations. On the other hand, the naive MDP approximation is

over-cautious. That is, it can attain a high level of safety, but it is never able to meet

the goal more than 80 % of the time. The omniscient upper bound planner achieves

performance equal to or greater than all other approaches.

As expected, better plans are attained as more accurate uncertainty is modeled

in planning. The mean MPC approach usually performs better than the baselines

because it dynamically estimates the model parameters, but it is still overconfident

(achieving a high success rate, but sacrificing safety) because it plans without any in-

ternal state uncertainty. QMDP performs better than mean MPC because it considers

samples from the entire estimated internal state distribution when planning. Since

the vehicle does not have to take costly information-gathering actions to accomplish

its goal, POMCPOW only rarely outperforms QMDP.

Convexity violations

One immediate concern that should be raised about the approximate Pareto frontiers

in Figs. 3.3 and 3.4 is that they are not all convex. The Pareto-optimal points

generated by solving optimization problems of the form in (1.4) must lie on the convex

hull of the true Pareto front (see Boyd and Vandenberghe [14], Example 2.27). Thus,

approximate Pareto fronts plotted by connecting particular solutions with straight

lines as in Figs. 3.3 and 3.4 should be convex. Particularly egregious violations of

convexity can be found in the mean MPC curve in Fig. 3.3a and the normal behavior

assumption curve in Fig. 3.4, where there are “kinks” at the third point from the top

CHAPTER 3. PLANNING WITH INTERNAL STATES IN DRIVING 64

0.94 0.96 0.98 1
0

0.2

0.4

0.6

0.8

1

Fraction safe

F
ra

ct
io

n
su

cc
es

sf
u

l

QMDP Naive MDP
POMCPOW Mean MPC
Assume normal Omniscient

30 35

1

1.5

2

T (s)

ẋ
0

(m
/s

)

Parameter distribution slice

(a) Scenario 1: Uncorrelated (ρ = 0)

0.96 0.97 0.98 0.99 1
0

0.2

0.4

0.6

0.8

1

Fraction safe

F
ra

ct
io

n
su

cc
es

sf
u

l

30 35 40

1

1.5

2

T (s)

ẋ
0

(m
/
s)

Parameter distribution slice

(b) Scenario 2: Fully correlated (ρ = 1)

Figure 3.3: Approximate Pareto performance curves for model distributions at cor-
relation extremes. The scatter plots at right illustrate the level of correlation with
samples from the joint parameter distribution. Error bars indicate the standard error
of the mean.

CHAPTER 3. PLANNING WITH INTERNAL STATES IN DRIVING 65

0.96 0.97 0.98 0.99 1
0

0.2

0.4

0.6

0.8

1

Fraction safe

F
ra

ct
io

n
su

cc
es

sf
u

l

QMDP Naive MDP
POMCPOW Mean MPC
Assume normal Omniscient

30 35 40

1

1.5

2

T (s)

ẋ
0

(m
/
s)

Parameter distribution slice

Figure 3.4: Approximate Pareto performance curves for partially correlated model
distribution (Scenario 3: ρ = 0.75). Error bars indicate the standard error of the
mean.

CHAPTER 3. PLANNING WITH INTERNAL STATES IN DRIVING 66

(λ = 2) that prevent these curves from even being monotonic.

The lack of convexity may be due to some combination of the following reasons:

1. The performance objectives plotted in the graphs do not exactly match the

stage-wise reward function (3.6). For example, the planner observes a larger

penalty if there are multiple safety violations, but this is not reflected in the

plots.

2. The MCTS-DPW solution method is itself stochastic and has no guarantees of

convergence in finite time.

3. Even given infinite computing time, the solvers will converge to inaccurate ap-

proximations of the true POMDP solution (except, perhaps, for POMCPOW).

One compelling explanation for the kinks mentioned above is that, as λ is in-

creased, since the planner is penalized more severely for unsafe actions, it plans a

more conservative trajectory and stays on the road longer. The longer time on the

road gives more chances for unsafe events to occur which are difficult for the planner

to predict and avoid because of its inaccurate model. This explanation is corrobo-

rated by the results in Fig. 3.5. In both places where there were previously kinks, the

number of hard brakes per kilometer decreases as λ increases.

3.4.3 Correlation comparison

It is also interesting to consider the effect that the correlation between model param-

eters has on the relative effectiveness of the control approaches. Figure 3.3a shows

that when there is no correlation, QMDP offers a significant advantage over mean

MPC, and POMCPOW offers a further significant advantage over QMDP. In this

case, since the parameters are uncorrelated, there is a large amount of uncertainty

in them even when some (e.g. ẋ0) are easy to observe, and since POMCPOW is

able to plan into the future considering this uncertainty, it performs better. On the

other hand, when the parameters are fully correlated as shown in Fig. 3.3b, all of the

parameters are easy to estimate by observing only a few, so there is not a significant

performance gap between mean MPC, QMDP, and POMCPOW; all are able to close

CHAPTER 3. PLANNING WITH INTERNAL STATES IN DRIVING 67

0 0.02 0.04 0.06 0.08 0.1
0

0.2

0.4

0.6

0.8

1

Hard brakes per kilometer

F
ra

ct
io

n
su

cc
es

sf
u

l
QMDP Naive MDP

POMCPOW Mean MPC

Assume normal Omniscient

(a) Fully correlated (ρ = 1)

0 0.02 0.04 0.06 0.08 0.1 0.12
0

0.2

0.4

0.6

0.8

1

Hard brakes per kilometer

F
ra

ct
io

n
su

cc
es

sf
u

l
(b) Partially correlated (ρ = 0.75)

Figure 3.5: Average hard braking frequency and success rate

the gap and achieve nearly the same performance as the upper bound. Figure 3.4

shows the expected behavior between the extremes.

Figure 3.6 shows the performance gaps at more points between ρ = 0 and 1. As

the correlation increases, the approximate POMDP planning approaches get steadily

closer to closing the performance gap with the upper bound. These results have

significant implications for the real world. It suggests that if most human driver

behavior is correlated with easily measurable quantities, near-optimal performance

can be achieved by simpler approaches like mean MPC. If there is little correlation,

planning with internal states offers a less pronounced benefit, and more advanced

planners that carry the uncertainty further into the future are needed to realize that

benefit.

3.4.4 Robustness

In the experiments above, internal parameter distribution is assumed to be known

exactly. Because there will be differences between any model used in planning and

CHAPTER 3. PLANNING WITH INTERNAL STATES IN DRIVING 68

0 0.2 0.4 0.6 0.8 1

0.85

0.9

0.95

1

Correlation

F
ra

ct
io

n
sa

fe
an

d
su

cc
es

sf
u

l

QMDP POMCPOW

Mean MPC Assume normal

Omniscient

Figure 3.6: Performance variation with Θ correlation. Error bars indicate the 68 %
(corresponding to one standard deviation in a normal distribution) confidence region
determined by the Hoeffding Bound. The Naive MDP performance is not shown
because it is significantly lower than the other approaches.

the way human drivers actually behave, it is important to test planning algorithms

for robustness. This section contains tests in which the parameter distribution for

planning differs from the true distribution.

Parameter Correlation Robustness

The first robustness test examines the effect of correlation inaccuracy. POMCPOW

and QMDP planners that assume no correlation and full correlation are tested against

simulation models with varying levels of correlation. Figure 3.7 shows the results.

Performance does not degrade abruptly when the correlation model is inaccurate,

though there is an advantage to planning with a correlated model when the true

parameters are fully correlated.

CHAPTER 3. PLANNING WITH INTERNAL STATES IN DRIVING 69

0 0.2 0.4 0.6 0.8 1
0.9

0.92

0.94

0.96

0.98

1

True correlation

F
ra

ct
io

n
sa

fe
a
n

d
su

cc
es

sf
u

l

POMCPOW (ρ = 0.0) QMDP (ρ = 0.0)

POMCPOW (ρ = 1.0) QMDP (ρ = 1.0)

Omniscient

Figure 3.7: Parameter correlation robustness study. Error bars indicate the 68 %
confidence region determined by the Hoeffding Bound.

Parameter Domain Robustness

In the second robustness test, the domain from which the parameters are drawn is

expanded by a variable factor. Specifically, in the new test distribution, the “Normal”

values from Table 3.2 are still used as the midpoints of the distribution, but the

distance to the extremes is multiplied by the expansion factor. For example, if the

expansion factor is 2, the marginal distribution of the desired time gap, T , is uniform

between 0.5 s and 2.5 s. Distributions that contain physically nonsensical values such

as a negative jam distance, g0, are truncated. The planner always uses the distribution

defined by values from Table 3.2.

Figure 3.8 shows the results of tests with expansion factor values between 0.2

and 2.0. All approaches have significantly more success when the expansion factor is

less than 1, indicating that the problem is easier in this case, even with an inaccurate

model. There is significant performance degradation at higher expansion factors, both

in absolute terms and relative to the omniscient upper bound. However, this degra-

dation is one-sided; there is little performance lost due to planning with distribution

CHAPTER 3. PLANNING WITH INTERNAL STATES IN DRIVING 70

domains that are larger than the true distribution domain. This one-sidedness sug-

gests that, in practice, prior distributions should be chosen conservatively (i.e. with

a larger domain than that of the true distribution) so that the planner can handle

situations with both higher- and lower-than-expected levels of uncertainty.

0.5 1 1.5 2
0.7

0.8

0.9

1

Parameter domain expansion factor

F
ra

ct
io

n
sa

fe
a
n

d
su

cc
es

sf
u

l

QMDP Naive MDP

POMCPOW Mean MPC

Assume normal Omniscient

Figure 3.8: Parameter domain robustness study. Error bars indicate the 68 % confi-
dence region determined by the Hoeffding Bound.

3.5 Discussion

This chapter investigates the effects of modeling outcome and state uncertainty in

autonomous driving. The problem of making multiple lane changes on a highway

within a limited distance is modeled as a POMDP. Both MDP solutions that ignore

the internal states of other drivers, and POMDP solutions that do model these internal

states with various degrees of approximation are considered. An upper performance

bound is established by planning with full knowledge of the internal states. In order

to remain agnostic with regard to the relative importance of safety and efficiency,

Pareto frontiers are compared.

POMDP approaches are compared to both a conservative MDP formulation that

CHAPTER 3. PLANNING WITH INTERNAL STATES IN DRIVING 71

models internal state uncertainty as outcome uncertainty and an overly confident

MDP approach where knowledge of the internal state is assumed. The advantage of

the POMDP approaches is clear in all of the tests. However, the relative effective-

ness of different POMDP approaches is heavily dependent on the correlation of the

distributions of the internal states. If the internal states are highly correlated, simply

estimating them with a particle filter and planning assuming certainty equivalence is

adequate to nearly match the upper performance bound. On the other hand, when

the parameters are uncorrelated, the QMDP planner performs much better than the

certainty equivalence planner, and POMCPOW performs much better than QMDP.

Moreover, in this uncorrelated case, there is a significant gap between all approaches

and the upper bound. Partial correlation produces the expected results between the

correlated and uncorrelated cases.

Experiments also characterize the robustness of the algorithms to incorrect pa-

rameter distributions. POMCPOW and QMDP do not suffer significant performance

degradation when the parameter correlation is not correct. Robustness to inaccuracy

in the parameter domain is one-sided: when the true domain is larger than that as-

sumed by the planners, performance is adversely affected, but when the true domain

is smaller, there is no degradation.

The primary weakness of this investigation is the model for other drivers. Since

the IDM and MOBIL models were developed to simulate large scale traffic flow [106,

50], their accuracy for microscopic simulations has not been attested with data. Up-

grading to models learned from data would further validate the conclusions drawn

here. Other similar research has taken steps in this direction by using a conditional

variational auto-encoder model [88]. The model used here also neglects one of the

key internal states of drivers: intentions. Planning based on the possible intentions

of other drivers would likely be an even more powerful planning technique than the

approach investigated here because it would enable sophisticated interaction and com-

munication between the autonomous cars and humans.

The results of this investigation should also be used to guide future research

into modeling. In particular, since correlation is such a significant factor influencing

performance, it is important to determine whether internal states that determine

CHAPTER 3. PLANNING WITH INTERNAL STATES IN DRIVING 72

behavior are correlated with easily measured quantities in real human drivers.

Finally, more advanced planning techniques, such as the DESPOT algorithm,

should also be investigated. In order to isolate the effects of uncertainty modeling,

the solution algorithms in this investigation were limited to variants of Monte Carlo

tree search that use double progressive widening. The next chapter analyzes online

algorithms for solving POMDPs with continuous observation spaces like the problem

addressed here. In addition to proposing the POMCPOW algorithm used in this

chapter, it includes a comparison with DESPOT on this problem and shows that it

outperforms POMCPOW because of its ability to plan with a longer effective horizon.

Chapter 4

Online Algorithms for Continuous

POMDPs

The autonomous driving problem in the previous chapter illustrates that model-

ing partially observable internal states can have a significant effect on performance.

POMDPs based on real world problems, such as the one considered in Chapter 3,

often have continuous state, action, and observation spaces. Although the research

surveyed in the introduction (Section 1.2.8) has yielded effective solution techniques

for many classes of POMDPs, there remains a need for simple, general purpose online

solvers that can handle continuous spaces, especially continuous observation spaces.

This chapter takes some important steps toward addressing that need.

POMCP and other online methods can easily accommodate continuous state

spaces without any modification [38]. However, there has been less progress on prob-

lems with continuous observation spaces. This chapter presents two similar algorithms

which address the challenge of solving POMDPs with continuous state, action, and

observation spaces. The first solves an approximation of the belief-space MDP and is

called particle filter trees with double progressive widening (PFT-DPW). The second

is based on POMCP and is called partially observable Monte Carlo planning with

observation widening (POMCPOW).

73

CHAPTER 4. ONLINE ALGORITHMS FOR CONTINUOUS POMDPS 74

4.1 Background

Figure 4.1: POMCP tree for a discrete POMDP (left), and for a POMDP with a
continuous observation space (right). Because the observation space is continuous,
each simulation creates a new observation node and the tree cannot extend deeper.

There are two challenges that make tree search difficult in continuous spaces. The

first is that, since the probability of sampling the same real number twice from a

continuous random variable is zero, the width of the planning trees explodes on the

first step, causing them to be too shallow to be useful (see Fig. 4.1). POMCPOW

and PFT-DPW resolve this issue with a technique called double progressive widen-

ing (DPW) [23]. The second issue is that, even when DPW is applied, the belief

representations used by current solvers collapse to a single state particle, resulting in

overconfidence. As a consequence, the solutions obtained resemble QMDP policies,

and there is no incentive for information gathering. POMCPOW and PFT-DPW

overcome this issue by using the observation model to weight the particles used to

represent beliefs.

A small amount of previous research has sought online solutions to continuous

POMDPs. ABT has been extended to use generalized pattern search for selecting lo-

cally optimal continuous actions, an approach which is especially effective in problems

where high precision is important [90, 109]. Continuous observation Monte Carlo tree

search (COMCTS) constructs observation classification trees to automatically parti-

tion the observation space in a POMCP-like approach; however it did not perform

CHAPTER 4. ONLINE ALGORITHMS FOR CONTINUOUS POMDPS 75

much better than a Monte Carlo rollout approach in experiments [77].

4.2 Algorithms

This section presents and discusses several methods for handling continuous POMDPs.

First, it presents three new MCTS-DPW-based algorithms. The first of these is

POMCP-DPW. Theorem 1 shows that this algorithm is suboptimal in some cases.

The second algorithm is PFT-DPW, a straightforward application of MCTS-DPW

to the belief MDP with particle filters to approximate belief updates. The third al-

gorithm is POMCPOW, which fixes the problems noted about POMCP-DPW and

successfully extends POMCP to problems with continuous observation spaces. These

three algorithms are followed by brief discussion about the discretization alterna-

tive to these algorithms and the additional observation distribution requirement of

POMCPOW and PFT-DPW.

The three new algorithms in this chapter share some common structure. For all

algorithms, the entry point for the decision making process is the Plan procedure,

which takes the current belief, b, as an input (Plan differs slightly for PFT-DPW

in Algorithm 4). The algorithms also share the same ActionProgWiden function

to control progressive widening of the action space. These components are listed in

Algorithm 2. The difference between the algorithms is in the Simulate function.

The following variables are used in the listings and text: h represents a history

(b, a1, o1, . . . ak, ok), and ha and hao are shorthand for histories with a and (a, o)

appended to the end, respectively; d is the depth left to explore, with dmax the

maximum depth; C is a list of the children of a node (along with the reward in the

case of PFT-DPW); N is a count of the number of visits; and M is a count of the

number of times that a history has been generated by the model. The list of states

associated with a node is denoted B, and W is a list of weights corresponding to those

states. Finally, Q(ha) is an estimate of the value of taking action a after observing

history h. C, N , M , B, W , and Q are all implicitly initialized to 0 or ∅. The

Rollout procedure runs a d-step simulation with a default rollout policy, which can

be based on the history or fully observed state, and returns the discounted reward.

CHAPTER 4. ONLINE ALGORITHMS FOR CONTINUOUS POMDPS 76

Algorithm 2 Common procedures

1: procedure Plan(b)
2: for i ∈ 1 : n
3: s← sample from b
4: Simulate(s, b, dmax)

5: return argmax
a

Q(ba)

6: procedure ActionProgWiden(h)
7: if |C(h)| ≤ kaN(h)αa

8: a← NextAction(h)
9: C(h)← C(h) ∪ {a}

10: return argmax
a∈C(h)

Q(ha) + c
√

logN(h)
N(ha)

4.2.1 POMCP-DPW

The first algorithm that we consider is POMCP with double progressive widening

(POMCP-DPW). In this algorithm, listed in Algorithm 3, the number of new children

sampled from any node in the tree is limited by DPW using the parameters ka, αa,

ko, and αo. In the case where the simulated observation is rejected (line 14), the

tree search is continued with an observation selected in proportion to the number of

times, M , it has been previously simulated (line 15), and a state is sampled from the

associated belief (line 16).

This algorithm may converge to the optimal solution for POMDPs with discrete

observation spaces; however, on continuous observation spaces, POMCP-DPW is

suboptimal. In particular, it finds a QMDP policy (see Section 1.2.9). In fact,

for a modified version of POMCP-DPW, it is easy to prove that it will converge to

such a policy (Theorem 1, below). Appendix A describes the modified algorithm

and problem requirements including the definitions of polynomial exploration, the

regularity hypothesis for the problem, and exponentially sure convergence that are

used in the discussion of the theorem below.

Definition 1 (QMDP value). Let QMDP(s, a) be the optimal state-action value func-

tion assuming full observability starting by taking action a in state s. The QMDP

value at belief b, QMDP(b, a), is the expected value of QMDP(s, a) when s is distributed

CHAPTER 4. ONLINE ALGORITHMS FOR CONTINUOUS POMDPS 77

Algorithm 3 POMCP-DPW

1: procedure Simulate(s, h, d)
2: if d = 0
3: return 0
4: a← ActionProgWiden(h)
5: if |C(ha)| ≤ koN(ha)αo

6: s′, o, r ← G(s, a)
7: C(ha)← C(ha) ∪ {o}
8: M(hao)←M(hao) + 1
9: B(hao)← B(hao) ∪ {s′}

10: if M(hao) = 1
11: total← r + γRollout(s′, hao, d− 1)
12: else
13: total← r + γSimulate(s′, hao, d− 1)

14: else
15: o← select o ∈ C(ha) w.p. M(hao)∑

oM(hao)

16: s′ ← select s′ ∈ B(hao) w.p. 1
|B(hao)|

17: r ← R(s, a, s′)
18: total← r + γSimulate(s′, hao, d− 1)

19: N(h)← N(h) + 1
20: N(ha)← N(ha) + 1

21: Q(ha)← Q(ha) + total−Q(ha)
N(ha)

22: return total

CHAPTER 4. ONLINE ALGORITHMS FOR CONTINUOUS POMDPS 78

according to b.

Theorem 1 (Modified POMCP-DPW convergence to QMDP). If a bounded-horizon

POMDP meets the following conditions: 1) the state and observation spaces are con-

tinuous with a finite observation probability density function, and 2) the regularity

hypothesis is met, then modified POMCP-DPW will produce a value function esti-

mate, Q̂, that converges to the QMDP value for the problem. Specifically, there exists

a constant C > 0, such that after n iterations,∣∣∣Q̂(b, a)−QMDP(b, a)
∣∣∣ ≤ C

n1/(10dmax−7)

exponentially surely in n, for every action a.

(a) POMCP-DPW Tree (b) POMCPOW Tree

Figure 4.2: Tree structure comparison. Each square is an action node, and each
unfilled circle is an observation node. Each black dot corresponds to a state particle
with the size representing its weight. In continuous observation spaces, the beliefs in
a POMCP-DPW tree degenerate to a single particle, while POMCPOW maintains
weighted particle mixture beliefs.

A proof of this theorem that leverages work by Auger, Couetoux, and Teytaud [4]

is given in Appendix A, but a brief justification is provided here. The key is that belief

nodes will contain only a single state particle (see Fig. 4.2). This is because, since the

CHAPTER 4. ONLINE ALGORITHMS FOR CONTINUOUS POMDPS 79

observation space is continuous with a finite density function, the generative model

will (with probability one) produce a unique observation o each time it is queried.

Thus, for every generated history h, only one state will ever be inserted into B(h)

(Algorithm 3, line 9), and therefore h is merely an alias for that state. Since each

belief node corresponds to a state, the solver is actually solving the fully observable

MDP at every node except the root node, leading to a QMDP solution.

As a result of Theorem 1, the action chosen by modified POMCP-DPW will

match a QMDP policy (a policy of actions that maximize the QMDP value) with

high precision exponentially surely (see Corollary 1 of Auger, Couetoux, and Teytaud

[4]). For many problems, e.g. the problem in Chapter 3, this is a very useful solution,

but since it neglects the value of information, a QMDP policy is suboptimal for

problems where information gathering is important [65, 52].

Although Theorem 1 is only theoretically applicable to the modified version of

POMCP-DPW, it helps explain the behavior of other solvers. Modified POMCP-

DPW, POMCP-DPW, DESPOT, and ABT all share the characteristic that a belief

node can only contain two states if they generated exactly the same observation. Since

this is an event with zero probability for a continuous observation space, these solvers

exhibit suboptimal, often QMDP-like, behavior. The experiments in Section 4.3.6

show this for POMCP-DPW and DESPOT, and this is presumably the case for ABT

as well.

4.2.2 PFT-DPW

Another algorithm that one might consider for solving continuous POMDPs online

is MCTS-DPW on the equivalent belief MDP. Since the Bayesian belief update is

usually computationally intractable, a particle filter is used. This new approach will

be referred to as particle filter trees with double progressive widening (PFT-DPW). It

is shown in Algorithm 4, where GPF(m)(b, a) is a particle filter belief update performed

with a simulated observation and m state particles which approximates the belief

MDP generative model. The authors are not aware of any mention of this algorithm

in prior literature, but it is very likely that MCTS with particle filters has been used

CHAPTER 4. ONLINE ALGORITHMS FOR CONTINUOUS POMDPS 80

Algorithm 4 PFT-DPW

1: procedure Plan(b)
2: for i ∈ 1 : n
3: Simulate(b, dmax)

4: return argmax
a

Q(ba)

5: procedure Simulate(b, d)
6: if d = 0
7: return 0
8: a← ActionProgWiden(b)
9: if |C(ba)| ≤ koN(ba)αo

10: b′, r ← GPF(m)(b, a)
11: C(ba)← C(ba) ∪ {(b′, r)}
12: total← r + γRollout(b′, d− 1)
13: else
14: b′, r ← sample uniformly from C(ba)
15: total← r + γSimulate(b′, d− 1)

16: N(b)← N(b) + 1
17: N(ba)← N(ba) + 1

18: Q(ba)← Q(ba) + total−Q(ba)
N(ba)

19: return total

CHAPTER 4. ONLINE ALGORITHMS FOR CONTINUOUS POMDPS 81

before without double progressive widening under another name.

PFT-DPW is fundamentally different from POMCP and POMCPOW because it

relies on simulating approximate belief trajectories instead of state trajectories. This

distinction also allows it to be applied to problems where the reward is a function of

the belief rather than the state such as pure information-gathering problems [28, 3].

The primary shortcoming of this algorithm is that the number of particles in the

filter, m, must be chosen a-priori and is static throughout the tree. Each time a new

belief node is created, an O(m) particle filter update is performed. If m is too small,

the beliefs may miss important states, but if m is too large, constructing the tree is

expensive. Fortunately, the experiments in Section 4.3 show that it is often easy to

choose m in practice; for all the problems studied here, a value of m = 20 resulted in

good performance.

4.2.3 POMCPOW

In order to address the suboptimality of POMCP-DPW, a new algorithm, POM-

CPOW, shown in Algorithm 5 is proposed here. In this algorithm, the belief updates

are weighted, but they also expand gradually as more simulations are added. Further-

more, since the richness of the belief representation is related to the number of times

the node is visited, beliefs that are more likely to be reached by the optimal policy

have more particles. At each step, the simulated state is inserted into the weighted

particle collection that represents the belief (line 10), and a new state is sampled from

that belief (line 16). A simple illustration of the tree is shown in Figure 4.2 to con-

trast with a POMCP-DPW tree. Because the resampling in line 16 can be efficiently

implemented with binary search, the computational complexity is O(nd log(n)).

4.2.4 Discretization

Discretization is perhaps the most straightforward way to deal with continuous obser-

vation spaces. In this approach, the continuous observation space is simply divided

into small discrete regions and solved as a discrete POMDP using conventional meth-

ods. The results in Table 4.1 show that this approach is only sometimes effective.

CHAPTER 4. ONLINE ALGORITHMS FOR CONTINUOUS POMDPS 82

Algorithm 5 POMCPOW

1: procedure Simulate(s, h, d)
2: if d = 0
3: return 0
4: a← ActionProgWiden(h)
5: s′, o, r ← G(s, a)
6: if |C(ha)| ≤ koN(ha)αo

7: M(hao)←M(hao) + 1
8: else
9: o← select o ∈ C(ha) w.p. M(hao)∑

oM(hao)

10: append s′ to B(hao)
11: append Z(o | s, a, s′) to W (hao)
12: if o /∈ C(ha) . new node
13: C(ha)← C(ha) ∪ {o}
14: total← r + γRollout(s′, hao, d− 1)
15: else
16: s′ ← select B(hao)[i] w.p. W (hao)[i]∑m

j=1W (hao)[j]

17: r ← R(s, a, s′)
18: total← r + γSimulate(s′, hao, d− 1)

19: N(h)← N(h) + 1
20: N(ha)← N(ha) + 1

21: Q(ha)← Q(ha) + total−Q(ha)
N(ha)

22: return total

CHAPTER 4. ONLINE ALGORITHMS FOR CONTINUOUS POMDPS 83

4.2.5 Observation Distribution Requirement

It is important to note that, while POMCP, POMCP-DPW, and DESPOT only

require a generative model of the problem, both POMCPOW and PFT-DPW require

a way to query the relative likelihood of different observations (Z in line 11). One

possible objection against POMCPOW and PFT-DPW is that this requirement limits

them to a restricted class of POMDPs. However, there are at least two reasons to

expect that it will be an effective tool in practice.

First, this requirement is no more stringent than the requirement for a standard

importance resampling particle filter, and such filters are used widely, at least in the

field of robotics that the authors are most familiar with. Moreover, if the observation

model is complex, an approximate model may be sufficient.

Second, given the implications of Theorem 1, it is difficult to imagine a tree-based

decision-making algorithm or a robust belief updater that does not require some way

of measuring whether a state belongs to a belief or history. The observation model is

a straightforward and standard way of specifying such a measure. Finally, in practice,

except for the simplest of problems, using POMCP or DESPOT to repeatedly ob-

serve and act in an environment already requires more than just a generative model.

For example, the authors of the original paper describing POMCP [93] use heuristic

particle reinvigoration in lieu of an observation model and importance sampling.

4.3 Experiments

Numerical simulation experiments in five domains were conducted to evaluate the per-

formance of POMCPOW and PFT-DPW compared to other solvers. The open source

code for the experiments is built on the POMDPs.jl framework (Chapter 5) and hosted

at https://github.com/zsunberg/ContinuousPOMDPTreeSearchExperiments.jl.

In all experiments, the solvers were limited to 1 second of computation time per step.

Belief updates were accomplished with a particle filter independent of the planner,

and no part of the tree was saved for re-use on subsequent steps. All results are pre-

sented together in Table 4.1 on Page 85. Each of the five domains is described below

https://github.com/zsunberg/ContinuousPOMDPTreeSearchExperiments.jl

CHAPTER 4. ONLINE ALGORITHMS FOR CONTINUOUS POMDPS 84

along with a a brief description of how the different solvers perform. Hyperparameter

values and discretization details are given in Sections 4.3.6 and 4.3.7 respectively.

4.3.1 Laser Tag

Figure 4.3: Laser Tag benchmark. The green square is the robot; the orange square
is the target. The varying shades of yellow show the belief about the position of the
target. The red dashed lines represent the laser sensors.

The Laser Tag benchmark (Fig. 4.3) is taken directly from the work of Somani, Ye,

Hsu, and Lee [97] and included for the sake of calibration. A complete description is

given in that work. DESPOT outperforms the other methods in this test. The score

for DESPOT differs slightly from that reported by Somani, Ye, Hsu, and Lee [97]

likely because of bounds implementation differences. POMCP performs much better

than reported by Somani, Ye, Hsu, and Lee [97] because this implementation uses a

state-based rollout policy.

4.3.2 Light Dark

In the Light Dark domain, the state is an integer between −60 and 60, and the

agent can choose how to move deterministically (s′ = s + a) from the action space

A = {−10,−1, 0, 1, 10}. The goal is to reach the origin and take an action there. If

action 0 is taken at the origin, a reward of 100 is given and the problem terminates; If

CHAPTER 4. ONLINE ALGORITHMS FOR CONTINUOUS POMDPS 85

T
ab

le
4.

1:
E

x
p

er
im

en
ta

l
re

su
lt

s

L
as

er
T

ag
(D

,
D

,
D

)
L

ig
h
t

D
ar

k
(D

,
D

,
C

)
S
u
b

H
u
n
t

(D
,

D
,

C
)

P
O

M
C

P
O

W
−

10
.3
±

0.
2

56
.1
±

0.
6

69
.2
±

1.
3

P
F

T
-D

P
W

−
11
.1
±

0.
2

57
.2
±

0.
5

77
.4
±

1.
1

Q
M

D
P

−
10
.5
±

0.
2

−
6.

4
±

1.
0

28
.0
±

1.
3

P
O

M
C

P
-D

P
W

−
10
.6
±

0.
2

−
7.

3
±

1.
0

28
.3
±

1.
3

D
E

S
P

O
T

−
8.

9
±

0.
2

−
6.

8
±

1.
0

26
.8
±

1.
3

P
O

M
C

P
D

−
14
.1
±

0.
2

61
.1
±

0.
4

28
.0
±

1.
3

D
E

S
P

O
T

D
54
.2
±

1.
1

27
.4
±

1.
3

V
D

P
T

ag
(C

,
C

,
C

)
M

u
lt

il
an

e
(C

,
D

,
C

)

P
O

M
C

P
O

W
29
.3
±

0.
8

30
.9
±

0.
9

P
F

T
-D

P
W

27
.2
±

0.
8

21
.4
±

0.
9

Q
M

D
P

P
O

M
C

P
-D

P
W

16
.4
±

1.
0

29
.6
±

0.
9

D
E

S
P

O
T

36
.0
±

0.
8

P
O

M
C

P
D

14
.7
±

0.
9

D
E

S
P

O
T

D
14
.3
±

1.
0

T
h

e
th

re
e

C
or

D
ch

ar
ac

te
rs

af
te

r
th

e
so

lv
er

in
d

ic
a
te

w
h

et
h

er
th

e
st

a
te

,
a
ct

io
n

,
a
n

d
o
b

se
rv

a
ti

on
sp

a
ce

s
a
re

co
n
ti

n
u

o
u

s
o
r

d
is

cr
et

e,
re

sp
ec

ti
ve

ly
.

F
or

co
n
ti

n
u

ou
s

p
ro

b
le

m
s,

so
lv

er
s

w
it

h
a

su
p

er
sc

ri
p

t
D

w
er

e
ru

n
o
n

a
ve

rs
io

n
o
f

th
e

p
ro

b
le

m
w

it
h

d
is

cr
et

iz
ed

a
ct

io
n

a
n

d
ob

se
rv

at
io

n
sp

ac
es

,
b

u
t

th
ey

in
te

ra
ct

ed
w

it
h

co
n
ti

n
u

o
u

s
si

m
u

la
ti

o
n

s
o
f

th
e

p
ro

b
le

m
.

CHAPTER 4. ONLINE ALGORITHMS FOR CONTINUOUS POMDPS 86

0 25 50 75 100-10

0

10

20

St
at

e

POMCPOW
Goal
Belief Particles
Trajectory

0 25 50 75 100
Time

-10

0

10

20

St
at

e
POMCP-DPW (QMDP)

Goal
Belief Particles
Trajectory

Figure 4.4: Example trajectories in the Light Dark domain. POMCPOW travels to
the light region and accurately localizes before moving to the goal. POMCP-DPW
displays QMDP-like behavior: It is unable to localize well enough to take action 0
with confidence. The belief particles far away from 0 in the POMCP-DPW plot are
due to particle reinvigoration that makes the filter more robust.

action 0 is taken at another location, a penalty of −100 is given. There is a cost of −1

at each step before termination. The agent receives a more accurate observation in

the “light” region around s = 10. Specifically, observations are continuous (O = R)

and normally distributed with standard deviation σ = |s− 10|.
Table 4.1 shows the mean reward from 1000 simulations for each solver, and

Fig. 4.4 shows an example experiment. The optimal strategy involves moving toward

the light region and localizing before proceeding to the origin. QMDP and solvers

predicted to behave like QMDP attempt to move directly to the origin, while POM-

CPOW and PFT-DPW perform better. In this one-dimensional case, discretization

allows POMCP to outperform all other methods and DESPOT to perform well, but in

subsequent problems where the observation space has more dimensions, discretization

does not provide the same performance improvement (see Section 4.2.4).

4.3.3 Sub Hunt

In the Sub Hunt domain, the agent is a submarine attempting to track and destroy

an enemy sub. The state and action spaces are discrete so that QMDP can be used

CHAPTER 4. ONLINE ALGORITHMS FOR CONTINUOUS POMDPS 87

Figure 4.5: Sub Hunt benchmark. The color of each location square shows the number
of belief particles containing the target at that location. In this case, the sub has
incorrectly concluded that, with high probability, the target is moving towards the
east and is chasing that belief concentration.

to solve the problem for comparison. The agent and the target each occupy a cell of a

20 by 20 grid. The target is either aware or unaware of the agent and seeks to reach a

particular edge of the grid unknown to the agent (S = {1, .., 20}4×{aware, unaware}×
{N,S,E,W}). The target stochastically moves either two steps towards the goal or

one step forward and one to the side. The agent has six actions, move three steps

north, south, east, or west, engage the other submarine, or ping with active sonar.

If the agent chooses to engage and the target is unaware and within a range of 2, a

hit with reward 100 is scored; The problem ends when a hit is scored or the target

reaches its goal edge.

An observation consists of 8 sonar returns (O = R8) at equally-spaced angles that

give a normally distributed estimate (σ = 0.5) of the range to the target if the target

is within that beam and a measurement with higher variance if it is not. The range

of the sensors depends on whether the agent decides to use active sonar. If the agent

does not use active sonar it can only detect the other submarine within a radius of

3, but pinging with active sonar will detect at any range. However, active sonar

alerts the target to the presence of the agent, and when the target is aware, the hit

probability when engaging drops to 60%.

CHAPTER 4. ONLINE ALGORITHMS FOR CONTINUOUS POMDPS 88

Table 4.1 shows the mean reward for 1000 simulations for each solver. The opti-

mal strategy includes using the active sonar, but previous approaches have difficulty

determining this because of the reduced engagement success rate. The PFT-DPW

approach has the best score, followed closely by POMCPOW. All other solvers have

similar performance to QMDP.

4.3.4 Van Der Pol Tag

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

(a) Van Der Pol Dynamics. The arrows
show the target differential equation, and
the thick black lines represent the barriers.

(b) Van Der Pol Tag. The agent attempts
to tag the target, but cannot pass through
barriers.

Figure 4.6: Van Der Pol tag problem

The final experimental problem is called Van Der Pol tag and has continuous

state, action, and observation spaces. In this problem an agent moves through 2D

space to try to tag a target (S = R4) that has a random unknown initial position in

[−4, 4]× [−4, 4]. The agent always travels at the same speed, but chooses a direction

of travel and whether to take an accurate observation (A = [0, 2π) × {0, 1}). The

observation again consists of 8 beams (O = R8) that give measurements to the target.

Normally, these measurements are too noisy to be useful (σ = 5), but, if the agent

chooses an accurate measurement with a cost of 5, the observation has low noise

(σ = 0.1). The agent is blocked if it comes into contact with one of the barriers

that stretch from 0.2 to 3.0 in each of the cardinal directions (see Fig. 4.6), while the

target can move freely through. There is a cost of 1 for each step, and a reward of

CHAPTER 4. ONLINE ALGORITHMS FOR CONTINUOUS POMDPS 89

100 for tagging the target (being within a distance of 0.1).

The target moves following a two dimensional form of the Van Der Pol oscillation

defined by the differential equations

ẋ = µ

(
x− x3

3
− y
)

and ẏ =
1

µ
x,

where µ = 2. Gaussian noise (σ = 0.05) is added to the position at the end of each

step. Runge-Kutta fourth order integration is used to propagate the state.

This problem has several challenging features that might be faced in real-world

applications. First, the state transitions are more computationally expensive because

of the numerical integration. Second, the continuous state space and obstacles make

it difficult to construct a good heuristic rollout policy, so random rollouts are used.

Table 4.1 shows the mean reward for 1000 simulations of this problem for each solver.

Since a POMCPOW iteration requires less computation than a PFT-DPW iteration,

POMCPOW simulates more random rollouts and thus performs slightly better.

4.3.5 Multilane

The final problem for evaluation is the multiple-lane-change problem described in

Section 3.2. Since costly information gathering is not an important part of this

problem, POMCP-DPW and POMCPOW have similar performance. Because it uses

a fixed number of scenarios and bounds to control exploration rather than progressive

widening and a UCB heuristic, DESPOT is able to make better long term plans and

is the most effective in this problem. It is also important to note that in this problem,

the most realistic of the test problems, PFT-DPW performs significantly worse than

POMCPOW.

4.3.6 Discretization granularity

Figure 4.7 shows the performance at different discretization granularities for the Light

Dark and Sub Hunt problems.

Since the Light Dark domain has only a single observation dimension, it is easy

CHAPTER 4. ONLINE ALGORITHMS FOR CONTINUOUS POMDPS 90

to discretize. In fact, POMCP with fine discretization outperforms POMCPOW.

However, discretization is only effective at certain granularities, and this is highly

dependent on the solver and possibly hyperparameters. In the Sub Hunt problem,

with its high-dimensional observation, discretization is not effective at any granularity.

In Van Der Pol tag, both the action and observation spaces must be discretized.

Due to the high dimensionality of the observation space, similar to Sub Hunt, no

discretization that resulted in good performance was found.

10−2 10−1 100 101
−40

−20

0

20

40

60

Discretization bin size

M
ea
n
ac
cu
m
u
la
te
d
re
w
ar
d

POMCPD

DESPOTD

POMCPOWD

POMCPOW

(a) Light Dark

10−2 10−1 100 101
0

20

40

60

Discretization bin size

M
ea
n
ac
cu
m
u
la
te
d
re
w
ar
d

POMCPD

DESPOTD

POMCPOWD

POMCPOW

(b) Sub Hunt

Figure 4.7: Discretization granularity studies

4.3.7 Hyperparameters

Hyperparameters for POMCPOW and PFT-DPW were chosen using the cross en-

tropy method [66], but exact tuning was not a high priority and some parameters

were re-used across solvers so the parameters may not be perfectly optimized. The

values used in the experiments are shown in Table 4.2. There are not enough ex-

periments to draw broad conclusions about the hyperparameters, but it appears that

performance is most sensitive to the exploration constant, c.

The values for the observation widening parameters, ko and αo, were similar for all

the problems in this work. A small αo essentially limits the number of observations to

a static number ko, resulting in behavior reminiscent of sparse UCT [17], preventing

unnecessary widening and allowing the tree to grow deep. This seems to work well in

CHAPTER 4. ONLINE ALGORITHMS FOR CONTINUOUS POMDPS 91

Table 4.2: Hyperparameters used in experiments

POMCPOW Laser Tag Light Dark Sub Hunt VDP Tag Multilane

c 26.0 90.0 17.0 110.0 8.0
ka – – – 30.0 –
αa – – – 1/30 –
ko 4.0 5.0 6.0 5.0 4.5
αo 1/35 1/15 1/100 1/100 1/10

PFT-DPW Laser Tag Light Dark Sub Hunt VDP Tag Multilane

m 20 20 20 20 15
c 26.0 100.0 100.0 70.0 8.0
ka – – – 20.0 –
αa – – – 1/25 –
ko 4.0 4.0 2.0 8.0 4.5
αo 1/35 1/10 1/10 1/85 1/10

For problems with discrete actions, all actions are considered and ka and αa are not needed.

practice with the branching factor (ko) set to values between 2 and 8, and suggests

that it may be sufficient to limit the number of children to a fixed number rather

than do progressive widening in a real implementation.

4.4 Discussion

The results in this chapter show that the previous leading online solvers are unable

to adequately solve POMDPs with continuous observation spaces where exploration

is important. In particular, Theorem 1 explains why these methods behave similarly

to QMDP. POMCPOW and PFT-DPW overcome this limitation and outperform

QMDP. Though POMCPOW only performs strictly best on one of the problems in

Section 4.3, it performs very well on all of them, so it might be considered the best

overall algorithm in these tests.

However there are still several shortcomings. First, there is no analytical proof

given that POMCPOW or PFT-DPW converge toward the optimal solution. Second,

CHAPTER 4. ONLINE ALGORITHMS FOR CONTINUOUS POMDPS 92

double progressive widening is made more difficult in practice because of its tuning

parameters. Third, the results from the Multilane experiment show that DESPOT is

able to find significantly better plans in more realistic problems. Thus, much work

remains along this trajectory. DESPOT has several attractive attributes compared

to the new algorithms presented here. In particular, its use of a fixed number of

scenarios to control widening, and bounds to control exploration may make it more

amenable to analysis and allow it to perform better in practice. Extending DESPOT

to handle continuous observation spaces seems to be a promising future direction.

In order to make this type of research much easier, the Stanford Intelligent Systems

Lab has created a software framework called POMDPs.jl which provides a standard

interface for expressing problems and tools for rapidly prototyping and evaluating new

algorithms using the Julia programming language. This framework is the subject of

the next chapter.

Chapter 5

A Julia Framework for POMDPs

Since exact optimal solutions to POMDPs can rarely be attained, most research

into solving realistic problems like those investigated in Chapters 2 and 3 involves

empirical comparison between solution techniques. Sharing solver software between

researchers can greatly improve the speed and quality of this work. Moreover, a

consistent and concise framework for representing problems and demonstrating so-

lution techniques is invaluable for POMDP education. This chapter describes the

POMDPs.jl software package created by the Stanford Intelligent Systems Lab (SISL)

to make state-of-the-art POMDP solution methods easily accessible to students, re-

searchers, and engineers [32]. All of the research in Chapters 3 and 4 was conducted

using this framework.

The POMDPs.jl package itself is implementation-free, and contains only the in-

terface, however the JuliaPOMDP organization maintains several other packages that

provide tools and concrete implementations. For example, the POMDPToolbox pack-

age contains a variety of useful tools for representing common distributions, beliefs,

policies, etc. and the POMDPModels package contains some simple problem imple-

mentations.

93

CHAPTER 5. A JULIA FRAMEWORK FOR POMDPS 94

5.1 Challenges for POMDP-solving software

A successful POMDP software framework must have, at a minimum, the following

attributes: speed, flexibility, and ease of use. Achieving all of these attributes simul-

taneously is a major challenge.

5.1.1 Speed

Since POMDPs are difficult to solve [76], any computational slowdown such as un-

necessary memory allocation or runtime type inference significantly reduces the max-

imum problem size that the framework can handle. For this reason, POMDP algo-

rithms must be compiled to efficient processor instructions with low overhead.

5.1.2 Flexibility

The set of problems that can be represented as a POMDP is extremely large and there

are many possible characteristics that such problems might have. A good POMDP

software framework should try to accommodate as much of this set as possible. A

few of the most important model characteristics to support are outlined below.

Partial and full observability

When studying a POMDP problem, it is almost always important to analyze the

underlying fully-observable problem. Thus, a good POMDP framework should have

first-class support for MDPs in addition to POMDPs.

Continuous and discrete problems

Some POMDPs have a finite number of states, actions, and observations, i.e. |S| <∞,

|A| < ∞, and |O| < ∞. However, many real world problems, notably robotics

problems, are naturally formulated in spaces with uncountably infinite cardinality,

e.g. S = R, A = R, and O = R, multi-dimensional vector spaces, e.g. S = R6,

or hybrid continuous-discrete spaces. This means that the framework must not be

CHAPTER 5. A JULIA FRAMEWORK FOR POMDPS 95

constrained to use integers for state representation, but should be capable of using a

range of structures including floating point numbers and arrays.

Explicit vs generative model representation

Some POMDP and MDP solution techniques use the explicit probability distributions

T and Z to solve problems. Thus, a successful framework must include a way to

explicitly specify T and Z. On the other hand, explicitly specifying T and Z for many

realistic problems is exceedingly difficult and tedious, and specifying a generative

model is the only practical way to encode the problem. Thus, a successful framework

must also include generative model support.

Online and offline solvers

While some POMDP solution techniques seek exact offline solutions to small prob-

lems, many larger problems can only be practically solved online. Thus a good

POMDP framework must have first class support for solving offline and efficiently

executing a policy online or executing a planner that does significant computation

online.

Policy representation

The policies that different solution techniques yield can take a variety of forms. Exact

solution techniques typically attempt to find alpha vectors that encode an optimal

policy [47, 58], whereas others use finite state machines [8]. Newer methods may use

neural networks [49] or other structures to store policies, so a successful framework

must provide a flexible way to represent all of these structures.

5.1.3 Ease of Use

In addition to being flexible and fast, the framework must be easy to use. It is possible

to make a framework that is performant and flexible but so complex that it will not be

adopted or will cause much time to be wasted in understanding and implementation.

CHAPTER 5. A JULIA FRAMEWORK FOR POMDPS 96

For the framework to be considered a success, it must be adopted by the community

and serve as an enabler rather than a hindrance to research.

5.2 Previous frameworks

A number of frameworks exist for solving sequential decision problems. However, most

frameworks are written from a reinforcement learning perspective and hence only sup-

port either fully observable problems or environments that can generate observations

but do not provide access to the Markov state structure of the problem. Examples

from this class are RLPy [35], and rllab [30]. The most closely related frameworks to

POMDPs.jl are APPL [59], AI-Toolbox [9], BURLAP [25], and ZMDP [96] in that

they explicitly represent the state and partial observability.

Of these POMDP frameworks, APPL contains the most advanced algorithms. It

is written efficiently in C++ and is excellent from a speed perspective. However, it

has several shortcomings in terms of flexibility and ease of use. First, though all of

the solvers in APPL support the POMDPX file format for discrete, explicit problem

definitions, flexibility is limited because there is not a unified interface for defining

generative models or continuous explicit models. Second, prototyping problems and

solvers in this framework is relatively time consuming and complex, making it difficult

to use. Specifically, the POMDPX file format is based on XML and is difficult for

humans to write directly, so, in most cases, custom scripts must be written to create

the files, and solvers and generative models written in C++ have higher development

time costs than those written in a higher level language. Third the main solvers

implemented in APPL all have subtle interaction differences. In fact, the APPL

website1 reports “At the moment, the three [APPL solver] packages are independent.

Maybe one day they will be merged in a single coherent framework.”

Though much research progress has been made with these frameworks, POMDPs.jl

offers several significant improvements.

1Permanent link: https://perma.cc/5CKT-GC96

https://perma.cc/5CKT-GC96

CHAPTER 5. A JULIA FRAMEWORK FOR POMDPS 97

5.3 Architecture

POMDPs.jl is designed to facilitate communication between different people perform-

ing three actions: defining problems, writing solver software, and running simulation

experiments. The same person will often operate in two or even all three of these

roles, but will nearly always use some code written by others.

The framework derives its solutions to the challenges outlined above primarily

through the use of the Julia language itself [11]. Julia is just-in-time compiled using

the state-of-the art LLVM compiler framework [62], giving it speed comparable to

traditional compiled languages such as C and C++. However, unlike other compiled

languages, it has many features that make numerical software development easier

and faster. For example, like Python, it is dynamically typed, has a powerful and

flexible type system, and uses a modern, convenient syntax with features like list

comprehensions. Moreover, like Matlab, it has built-in efficient multidimensional

arrays and linear algebra. This makes meeting the flexibility and ease-of-use goals

much easier.

The following section describes some of the concepts used in the framework before

the interface itself is outlined.

5.3.1 Concepts

To fulfill each of the roles mentioned above, a programmer implements one or more

classes that concretely represent concepts used to describe POMDPs and solvers.

The problem writer creates a concrete subtype of the POMDP or MDP abstract types to

represent a problem, the simulator writer creates a Simulator type to run simulations,

and the solver writer creates a Solver subtype to run computations offline, and a

Policy subtype to execute a policy online.

The most abstract concept in POMDPs.jl is the concept of belief. In the frame-

work, the term “Belief” is used to mean any structure that encodes the information

needed to execute the policy. For instance, if the policy is encoded as a set of alpha

vectors, the belief takes its usual meaning as an explicit probability distribution over

the states. For an online solver like POMCP, the belief must merely generate states

CHAPTER 5. A JULIA FRAMEWORK FOR POMDPS 98

for the tree search For a finite-state-machine policy like the one created by MCVI, the

belief is simply the id of the current node. An Updater in POMDPs.jl is an object

that defines how information from new observations is integrated into the belief. For

example, if the belief is a probability distribution, the updater would apply Bayes rule

or an approximation. Since the belief is often closely related to the policy, the solver

writer will often implement the Updater, however generic updaters such as particle

filters are also available. Figure 5.1 shows the three role concepts and some of the

associated abstract types and interface functions.

Experiment

Simulator

ProblemPOMDP Solver
Solver,
Policy,
Updater

transition(),
observation(),

etc.

solve(),
action(),
update(),

etc.

transition(),
observation(),

etc.

1

Figure 5.1: POMDPs.jl concepts. POMDPs.jl facilitates communication between
people in three roles. The abstract types are shown beside each node and some of
the interface functions are shown between the nodes. The arrows indicate which roles
use code from which other roles.

5.3.2 Interfaces

The behavior of POMDPs.jl objects is defined by implementing methods of inter-

face functions. Implementing interface functions serves as an alternative to writing

configuration files in formats like POMDPX or specification scripts in purpose-built

languages like RDDL [87]. For example, the problem writer may implement a method

of the reward function that returns the reward given a problem instance, state and

action. Julia will call the correct reward method for the problem type based on its

CHAPTER 5. A JULIA FRAMEWORK FOR POMDPS 99

multiple dispatch system [11]. Similarly, an Updater should have a corresponding

update method that returns a new belief given an updater object, previous belief,

action, and observation. The complete interface is not listed here, but is available in

the online documentation.

In POMDPs.jl, states, actions, observations, beliefs, and distributions can be

represented by any type as long as the appropriate interface methods are implemented.

This provides the flexibility needed to represent continuous or discrete problems.

Packages in the Julia ecosystem provide convenient and efficient types for common

state representations, such as small fixed-size vectors.

One flexibility goal that has not been met by most previous frameworks is sup-

port of both generative and explicit problem definitions. For example, in APPL,

all solvers can handle POMDPX problem specification for explicit definitions, but

the MCVI and DESPOT solvers use different interfaces for generative problems, and

there is no way to represent continuous problems explicitly. POMDPs.jl overcomes

this challenge by exposing both an explicit interface and a generative interface that

can be mixed. If the necessary parts of the explicit interface are implemented for a

problem, POMDPs.jl will automatically provide the generative interface functions for

the problem. The interface relationships are illustrated in Fig. 5.2. Implementations

of all of the interface functions are not strictly required; if the minimum set of func-

tions used by a solver or simulator are implemented for a problem, then that solver

or simulator will work with that problem.

Because of the interface’s flexibility, giving users helpful error messages and feed-

back about which interface functions they should implement and even checking whether

a sufficient portion of the interface has been implemented is a complex challenge. For

example, suppose a user intends to implement a complex problem that cannot easily

be expressed with an explicit definition and intends to use a solver that only requires

functions from the generative interface. If POMDPs.jl advises this user to imple-

ment functions from the explicit interface, he or she will conclude that expressing

the problem is difficult or impossible. This complexity drove the development of an

interface and framework for dynamically specifying requirements and dependencies

and generating helpful reports for users. In this requirements framework, built with

CHAPTER 5. A JULIA FRAMEWORK FOR POMDPS 100

SolversProblems

Figure 5.2: POMDPs.jl interfaces

Julia’s powerful metaprogramming tools, solver and simulator writers declare the re-

quirements for their algorithm, which may be based on solver options, and problem

writers can check which of the requirements have been satisfied by their problem

implementation. Examples of the output of this system are shown in Fig. 5.3.

5.4 Examples

This section presents simple examples illustrating implementations of the concepts

in Section 5.3.1, namely the problem, the solver, and the experiment.

5.4.1 Problem

The problem defines the MDP or POMDP model to be solved. For this example,

consider the Tiger POMDP example of Kaelbling, Littman, and Cassandra [47]. An

implementation of the type representing this POMDP is shown in Listing 1. The

TigerPOMDP type is a subtype of the abstract POMDP type The three parameters of

POMDP denote the types used to represent the states, actions, and observations. These

can be any types including built-in Julia types or special-purpose user defined types.

Here Symbols (interned strings) are used for the sake of readability, but Bools, Ints,

CHAPTER 5. A JULIA FRAMEWORK FOR POMDPS 101

(a) New problem with no methods

(b) Fully implemented problem

Figure 5.3: POMDPs.jl requirements example output for the value iteration solver

CHAPTER 5. A JULIA FRAMEWORK FOR POMDPS 102

or a custom enumeration could also easily be used.

The problem behavior is defined by implementing new methods of the functions in

the POMDPs.jl interface. For example, the observation function in Listing 1 returns

the observation distribution for the Tiger POMDP given an action and state. The

SparseCat object returned by this method is provided by the POMDPToolbox pack-

age, represents a (potentially sparse) categorical distribution over a list of objects.

Other code can randomly sample from the SparseCat distribution, query its proba-

bility distribution, and efficiently iterate over the members with nonzero probability.

Since the state in the Tiger POMDP never changes, the transition dynamics can be

expressed concisely as shown in Listing 1.

Listing 1 Partial implementation of the Tiger POMDP

struct TigerPOMDP <: POMDP{Symbol , Symbol , Symbol}

p_correct :: Float64 # probability of hearing the tiger correctly

discount :: Float64 # discount factor

end

function POMDPs.observation(pomdp ::TigerPOMDP , a::Symbol , s:: Symbol)

pc = pomdp.p_correctly

if a == :listen

if s == :tiger_left

p = pomdp.p_correct

else

p = 1.0 - pomdp.p_correct

end

else

p = 0.5

end

return SparseCat ([: tiger_left , :tiger_right], [p, 1.0-p])

end

function POMDPs.transition(pomdp ::TigerPOMDP , s::Symbol , a:: Symbol)

if a == :listen

return SparseCat ([s], [1.0])

else # a looking action - the problem finishes

return SparseCat ([: done], [1.0])

end

end

The entire problem definition contains several more methods, including reward,

actions, discount, isterminal, etc.

CHAPTER 5. A JULIA FRAMEWORK FOR POMDPS 103

5.4.2 Solver

A solver implementation requires between one and three type definitions: a Solver

that contains the parameters that define solver behavior, often a Policy that defines

a mapping from beliefs to actions, and sometimes an Updater if the belief is closely

linked to how the policy functions. Some example code for the QMDP [65] solution

method is shown below.

QMDP works by running value iteration on the fully observable MDP at the core.

In the solve function, partially shown in Listing 2, the POMDPs.jl functions which

will have methods for the particular POMDP being solved are called. Once value

iteration has completed, an AlphaVectorPolicy from POMDPToolbox.jl is returned.

The ellipses indicate code that has been left out for the sake of brevity.

Listing 2 Partial implementation of the QMDP solution technique

function POMDPs.solve(solver ::QMDPSolver , pomdp ::POMDP)

...

for i in 1: solver.max_iterations

...

for (istate ,s) in enumerate(states)

if isterminal(mdp , s)

util[istate] = 0.0

...

else

...

for a in iterator(actions(pomdp , s))

dist = transition(mdp , s, a)

u = 0.0

for (sp , p) in weighted_iterator(dist)

r = reward(pomdp , s, a, sp)

isp = state_index(pomdp , sp)

u += p * (r + discount(pomdp) * util[isp])

...

return AlphaVectorPolicy(qvalues)

end

5.4.3 Simulator

POMDP solution algorithms are typically evaluated by running Monte Carlo simula-

tions. A Simulator calls POMDPs.jl functions defined for the solver and the problem

CHAPTER 5. A JULIA FRAMEWORK FOR POMDPS 104

to run a simulation and return the desired statistics from that simulation. For ex-

ample, the experimenter might create a simulator type, Sim, and a corresponding

simulate function (an important part of the main simulation loop is shown in List-

ing 3).

Listing 3 Partial implementation of a simulation routine

function simulate(sim::Sim ,

pomdp ::POMDP ,

policy ::Policy ,

filter=updater(policy))

...

for t in 1:sim.max_steps

a = action(policy , b)

sp = rand(sim.rng , transition(pomdp , s, a))

r_total += discount(pomdp)^t*reward(pomdp , s, a, sp)

o = rand(sim.rng , observation(pomdp , s, a, sp))

b = update(filter , b, a, o)

...

end

end

With the examples above and the appropriate additional methods defined, a sim-

ulation can then be run as shown in Listing 4.

Listing 4 Program to solve the Tiger POMDP and simulate it

pomdp = TigerPOMDP () # initialize the tiger problem

solver = QMDPSolver () # initialize QMDP solver

policy = solve(solver , pomdp) # compute a policy

r = simulate(Sim(), pomdp , policy)

5.5 Discussion

By using the leverage of the Julia programming language, POMDPs.jl provides an

unprecedented level of flexibility for expressing and solving POMDPs. It is being

used by other researchers to investigate topics as diverse as GPS jammer detection by

drones and cancer screening recommendations, along with numerous student projects

for a course taught at Stanford.

CHAPTER 5. A JULIA FRAMEWORK FOR POMDPS 105

However, there is still much work to be done. First, for the simplest examples,

POMDPs.jl is a rather clumsy interface in that it requires methods to be implemented

to define behavior. Some of the best interfaces for expressing mathematical optimiza-

tion problems, such as JuMP [31] and CVX [40], have concise, declarative interfaces

that can express problems in a few lines of code and be easily interpreted by look-

ing at one page for a short time. The POMDP domain is much more diverse and

complex than the optimization domains addressed by these packages, but a concise

declarative interface that can represent a subset of POMDPs would be very helpful

in the education mission of POMDPs.jl.

Second, many of the solvers are far from achieving the full performance potential

of the algorithms that they implement. Since most modern hardware performance

increases are due to parallelism rather than single-process speed increases, one of the

most important factors in speeding up solver code is parallel implementation. Julia

has basic built-in tools for parallel processing, but there are still several pitfalls for

implementing parallel code. For example, since modern processors use caching exten-

sively to improve memory access, efficient parallel code should only access memory

that is likely to be in the local cache and not being used by another processor [27].

An investment of effort into parallelizing solver code would make the POMDPs.jl

ecosystem much more useful.

Chapter 6

Summary and Future Work

In order to realize benefits of autonomous transportation, the control systems of au-

tonomous vehicles must be safe. However, if this safety brings too great a sacrifice

in efficiency, the vehicles will not be adopted as widely or be as useful. This the-

sis investigated approaches for improving safety while sacrificing minimal efficiency,

specifically by proposing better methods for handling the uncertainty inherent in

the environment autonomous vehicles operate in. In addition, the thesis proposed

improved algorithms for solving the optimization problems that arise from vehicle

control problems Finally, it described the software framework created to make edu-

cation and research collaboration in this area easier. The remainder of this chapter

reviews the specific contributions of this thesis and outlines potential future research

directions.

6.1 Contributions and Summary

The first contribution (Chapter 2) is an investigation into the combination of

trusted resolution logic and optimization for UAV collision avoidance. Sim-

ple TRL has the advantage that guarantees about its operation are relatively easy to

certify. However, a comparison between simple TRL alone and MDP optimization

shows that there is a price in terms of both safety and efficiency accrued for using the

106

CHAPTER 6. SUMMARY AND FUTURE WORK 107

TRL. To reduce this price, two methods for combining the approaches are investi-

gated. The first is to use an MDP policy to dynamically adjust the parameters of the

TRL that govern its conservativeness. The second is to use the TRL as a constraint

on the actions that the MDP policy can choose. Simulation experiments show that

the second approach is superior.

The second contribution (Chapter 3) is a study of uncertainty modeling in

decision making for autonomous highway lane changing. This chapter con-

sidered approximate POMDP solutions where the internal states of other drivers are

explicitly modeled as a hidden part of the Markov state. The POMDP solutions

are compared with approximate MDP solutions, both assuming full knowledge of the

internal state and conservatively modeling state uncertainty as outcome uncertainty.

The advantage of POMDP solutions over MDP solutions is clear in all of

the tests, but the relative effectiveness of different POMDP approximations depends

greatly on the correlation of the different internal state parameters. Simulation tests

show that when the parameters are highly correlated, since it is easier to estimate

the hidden states, even greatly simplified POMDP approximations can achieve per-

formance near the upper bound established by an omnipotent planner. On the other

hand, when there is little or no correlation, POMDP solution methods that include

more of the uncertainty in the solution process perform significantly better. Experi-

ments also characterize the robustness of the algorithms with respect to the parameter

distribution.

The third contribution (Chapter 4) is a pair of improved algorithms for solv-

ing POMDPs online. Previous leading online algorithms have focused on solving

discrete problems, and are unable to solve problems with continuous action and ob-

servation spaces. Hence, new algorithms for the continuous domains encountered in

the real world are needed. The first part of this contribution (Section 4.2.1) is prov-

ing that a naive application of double progressive widening to the POMCP

algorithm will result in suboptimal behavior. In particular, in a continuous

observation space, it will converge to the QMDP solution because each belief node

will degenerate to a single state particle (Theorem 1). In fact, numerical experiments

confirm that all leading online solvers exhibit this behavior.

CHAPTER 6. SUMMARY AND FUTURE WORK 108

In response to this suboptimality, two new algorithms are proposed (Sections 4.2.2

and 4.2.3). The first, PFT-DPW, solves an approximation of the belief MDP, while

the second, POMCPOW, is an extension of POMCP with double progressive widen-

ing and weighted particle filtering. Numerical experiments (Section 4.3) show that

these algorithms are able to break the QMDP barrier and hence exhibit performance

that is qualitatively superior to previous algorithms. POMCPOW and PFT-DPW

perform similarly on most problems, but on the most realistic problem, a version of the

autonomous driving problem from Chapter 3, POMCPOW outperforms PFT-DPW.

The final contribution (Chapter 5) is a software framework, POMDPs.jl, which

provides an interface for expressing MDPs and POMDPs and tools for developing and

testing solvers. This framework is unprecedented in its flexibility. It can represent

discrete and continuous MDPs defined by both explicit probability distributions and

simulators that provide generative models. The Julia language also gives solvers

written to use the framework speed comparable to previous C++ implementations.

6.2 Future Work

There are many promising directions for future work to proceed from the results

presented in this thesis. The discussion portion of each chapter gives short-term

specific extensions to the individual research efforts described therein. This section

gives a broader overview.

The first line of future work involves safety constraints. Interaction of safety

constraints with sequential optimization is explored in Chapter 2 and such constraints

are used in Chapter 3. However, the actual constraints used there are very simple.

In real problems, these constraints will need to be more complex, consisting of, for

example, linear temporal logic rules [83] or results from reachability analysis [21].

Combining approximate POMDP solutions with these advanced safety constraints to

field a reliable system still requires much research.

The second line is focused on modeling. Chapters 2 and 3 evaluate their findings

based on simplistic models of other vehicles. To solidify the conclusions of this thesis,

better data-driven models of human drivers and pilots must be created. Indeed,

CHAPTER 6. SUMMARY AND FUTURE WORK 109

significant work has already been done in this area [88, 12]. However, these models

are limited in scope, primarily because of the limited data available. In order to be

able to test in more diverse scenarios, more data will need to be collected from the real

world, and models that are more data-efficient developed. Moreover, current planning

algorithms will not work efficiently with certain models. A particular example is

that recurrent neural networks with latent states the represent beliefs over internal

states [88] will not work with the POMDP algorithms used in this thesis. Thus, new

algorithms must be developed to work with the new models.

The third direction is continuing the development of better POMDP algo-

rithms. While the algorithms proposed in Chapter 4 demonstrate better performance

than previous algorithms, the shortcomings of this family of algorithms are also appar-

ent. In particular, algorithms based on MCTS-DPW have many tuning parameters

that must be chosen via unreliable hand tuning or time consuming optimization. In

addition, the proof of consistency for MCTS-DPW [4] is rather tedious, which is one

of the reasons that an analytical proof for the optimality of POMCPOW was not at-

tempted for this thesis. Moreover, the trees produced by these algorithms tend to be

shallow, reducing the effective planning horizon. As seen in the experimental results

for the multilane model in Table 4.1, DESPOT is able to perform better on more

realistic problems because it builds deeper trees and explores based on bounds rather

than upper confidence estimates. DESPOT’s fixed number of scenarios may also make

analysis easier. Given these advantages, the particle filter weighting approaches used

in PFT-DPW and POMCPOW should be applied to more advance algorithms like

DESPOT to enable them to explore in continuous observation spaces. Furthermore,

all of the algorithms discussed in this thesis use a single execution thread. In order to

take advantage of modern computing hardware, online parallel algorithms for solving

POMDPs must be investigated.

Finally, the problem of controlling autonomous vehicles in continuous, partially

observable domains has by no means been solved. One reason is the weakness of

decision-making algorithms for continuous spaces that can handle uncertainty

and irregularity. This thesis focused on continuous state and observation spaces, but

the action space is arguably the most difficult context for continuity. Some research

CHAPTER 6. SUMMARY AND FUTURE WORK 110

has begun to address this [90, 109], but these algorithms use only derivative-free

optimization techniques that may not scale to high dimensional problems. In many

continuous problems, if history h1 consists of actions and observations near the actions

and observations of history h2, the value at h1 will be very close to the value at h2.

This information is not exploited in any of the online solvers discussed in this thesis.

Although some work has been done to use this information in MCTS [111], new

algorithms that use ideas from optimal control, model predictive control, and motion

planning may be much better suited for continuous problems.

Appendix A

Proof of Theorem 1

A version of Monte Carlo tree search with double progressive widening has been

proven to converge to the optimal value function on fully observable MDPs by Auger,

Couetoux, and Teytaud [4]. We use this proof to show that POMCP-DPW converges

to the QMDP solution.

First we establish some preliminary definitions taken directly from Auger, Coue-

toux, and Teytaud [4].

Definition 2 (Regularity Hypothesis). The Regularity hypothesis is the assumption

that for any ∆ > 0, there is a non zero probability to sample an action that is optimal

with precision ∆. More precisely, there is a θ > 0 and a p > 1 (which remain the

same during the whole simulation) such that for all ∆ > 0,

Q(ha) ≥ Q∗(h)−∆ with probability at least min(1, θ∆p). (A.1)

Definition 3 (Exponentially sure in n). We say that some property depending on an

integer n is exponentially sure in n if there exists positive constants C, h, and η such

that the probability that the property holds is at least

1− C exp(−hnη).

111

APPENDIX A. PROOF OF THEOREM 1 112

In order for the proof from Auger, Couetoux, and Teytaud [4] to apply, the fol-

lowing four minor modifications to the POMCP-DPW algorithm must be made:

1. Instead of the usual logarithmic exploration, use polynomial exploration, that

is, select actions based on the criterion

Q(ha) +

√
N(h)ed

N(ha)
, (A.2)

as opposed to the traditional criterion

Q(ha) + c

√
logN(h)

N(ha)
, (A.3)

and create a new node for progressive widening when bNαc > b(N−1)αc rather

than when the number of children exceeds kNα.

2. Instead of performing rollout simulations, keep creating new single-child nodes

until the maximum depth is reached.

3. In line 15, instead of selecting an observation randomly, select the observa-

tion that has been visited least proportionally to how many times it has been

generated.

4. Use the depth-dependent coefficient values in Table 1 from Auger, Couetoux,

and Teytaud [4] instead of choosing static values.

This version of the algorithm will be referred to as “modified POMCP-DPW”.

The algorithm with these changes is listed in Algorithm 6.

We now define the “QMDP value” that POMCP-DPW converges to (this is re-

peated from the main text of the paper) and prove a preliminary lemma.

Definition 1 (QMDP value). Let QMDP(s, a) be the optimal state-action value func-

tion assuming full observability starting by taking action a in state s. The QMDP

value at belief b, QMDP(b, a), is the expected value of QMDP(s, a) when s is distributed

according to b.

APPENDIX A. PROOF OF THEOREM 1 113

Lemma 1. If POMCP-DPW or modified POMCP-DPW is applied to a POMDP with

a continuous observation space and observation probability density functions that are

finite everywhere, then each history node in the tree will have only one corresponding

state, that is |B(h)| = 1,M(h) = 1∀h.

Proof. Since the observation probability density function is finite, each call to the

generative model will produce a unique observation with probability 1. Because of

this, lines 18 and 19 of Algorithm 6 will only be executed once for each observation.

We are now ready to restate the theorem from the text.

Theorem 1 (Modified POMCP-DPW convergence to QMDP). If a bounded-horizon

POMDP meets the following conditions: 1) the state and observation spaces are con-

tinuous with a finite observation probability density function, and 2) the regularity

hypothesis is met, then modified POMCP-DPW will produce a value function esti-

mate, Q̂, that converges to the QMDP value for the problem. Specifically, there exists

a constant C > 0, such that after n iterations,∣∣∣Q̂(b, a)−QMDP(b, a)
∣∣∣ ≤ C

n1/(10dmax−7)

exponentially surely in n, for every action a.

The bound on the value estimate error, C
n1/(10dmax−7) , is based on the specific co-

efficients chosen by Auger, Couetoux, and Teytaud [4] and listed in Table 1 of their

paper. Alternative bounds may be possible with different coefficient choices. The

proof of the theorem is given below.

Proof. We prove that modified POMCP-DPW functions exactly as the Polynomial

UCT (PUCT) algorithm defined by Auger, Couetoux, and Teytaud [4] applied to an

augmented fully observable MDP, and hence converges to the QMDP value. We will

show this by proposing incremental changes to Algorithm 6 that do not change its

function that will result in an algorithm identical to PUCT.

APPENDIX A. PROOF OF THEOREM 1 114

Before listing the changes, we define the “augmented fully observable MDP” as

follows: For a POMDP P = (S,A, T ,R,O,Z, γ), and belief b, the augmented fully

observable MDP, M, is the MDP defined by (SA,A, TA,R, γ), where

SA = S ∪ {b} (A.4)

and, for all x, x′ ∈ SA,

TA(x′|x, a) =

T (x′|x, a) if x ∈ S∫
S
b(s)T (x′|s, a)ds if x = b

(A.5)

This is simply the fully observable MDP augmented with a special state representing

the current belief. It is clear that the value function for this problem, QM(b, a), is

the same as the QMDP value for the POMDP, QMDP(b, a). Thus, by showing that

modified POMCP-DPW behaves exactly as PUCT applied to M, we show that it

estimates the QMDP values.

Consider the following modifications to Algorithm 6 that do not change its be-

havior when the observation space is continuous:

1. Eliminate the state count M . Justification: By Lemma 1, its value will be 1 for

every node.

2. Remove B and replace with a mapping H from each node to a state of M;

define H(b) = b. Justification: By Lemma 1, B always contains only a single

state, so H contains the same information.

3. Generate states and rewards with GM, the generative model of M, instead of

G. Justification: Since the state transition model for the fully observable MDP

is the same as the POMDP, these are equivalent for all s ∈ S.

4. Remove the s argument of Simulate. Justification: The sampling in line 3 is

done implicitly in GM if h = b, and s is redundant in other cases because h can

be mapped to s through H.

APPENDIX A. PROOF OF THEOREM 1 115

The result of these changes is shown in Algorithm 7. It is straightforward to

verify that this algorithm is equivalent to PUCT applied to M. Each observation-

terminated history, h, corresponds to a PUCT “decision node”, z, and each action-

terminated history, ha, corresponds to a PUCT “chance node”, w. In other words,

the observations have no meaning in the tree other than making up the histories,

which are effectively just keys to or aliases for the state nodes.

Since PUCT is guaranteed by Theorem 1 of Auger, Couetoux, and Teytaud [4] to

converge to the optimal value function of M exponentially surely, POMCP-DPW is

guaranteed to converge to the QMDP value exponentially surely, and the theorem is

proven.

Remark 1. One may object that multiple histories may map to the same state through

H, and thus the history nodes in a modified POMCP-DPW tree are not equivalent to

state nodes in the PUCT tree. In fact, the PUCT algorithm does not check to see if

a state has previously been generated by the model, so it may also contain multiple

decision nodes z that correspond to the same state. Though this is not explicitly stated

by the authors, it is clear from the algorithm description, and the proof still holds.

APPENDIX A. PROOF OF THEOREM 1 116

Algorithm 6 Modified POMCP-DPW

1: procedure Plan(b)
2: for i ∈ 1 : n
3: s← sample from b
4: Simulate(s, b, dmax)

5: return argmax
a

Q(ba)

6: procedure ActionProgWiden(h)
7: if bN(h)αa,dc > b(N(h)− 1)αa,dc
8: a← NextAction(h)
9: C(h)← C(h) ∪ {a}

10: return argmax
a∈C(h)

Q(ha) +
√

N(h)ed

N(ha)

11: procedure Simulate(s, h, d)
12: if d = 0
13: return 0
14: a← ActionProgWiden(h)
15: if bN(ha)αo,dc > b(N(ha)− 1)αo,dc
16: s′, o, r ← G(s, a)
17: C(ha)← C(ha) ∪ {o}
18: M(hao)←M(hao) + 1
19: append s′ to B(hao)
20: else
21: o← argmin

o∈C(ha)

N(hao)/M(hao)

22: s′ ← select s′ ∈ B(hao) w.p. 1
|B(hao)|

23: r ← R(s, a, s′)

24: total← r + γSimulate(s′, hao, d− 1)
25: N(h)← N(h) + 1
26: N(ha)← N(ha) + 1

27: Q(ha)← Q(ha) + total−Q(ha)
N(ha)

28: return total

APPENDIX A. PROOF OF THEOREM 1 117

Algorithm 7 Modified POMCP-DPW on a continuous observation space

1: procedure Plan(b)
2: for i ∈ 1 : n
3: Simulate((b), dmax)

4: return argmax
a

Q(ha)

5: procedure ActionProgWiden(h)
6: if bN(h)αa,dc > b(N(h)− 1)αa,dc
7: a← NextAction(h)
8: C(h)← C(h) ∪ {a}
9: return argmax

a∈C(h)

Q(ha) +
√

N(h)ed

N(ha)

10: procedure Simulate(h, d)
11: if d = 0
12: return 0
13: a← ActionProgWiden(h, d)
14: if bN(ha)αo,dc > b(N(ha)− 1)αo,dc
15: ·, o, · ← G(H(h), a)
16: H(hao), r ← GM(H(h), a)
17: C(ha)← C(ha) ∪ {o}
18: else
19: o← argmin

o∈C(ha)

N(hao)

20: r ← R(H(h), a,H(hao))

21: total← r + γSimulate(hao, d− 1)
22: N(h)← N(h) + 1
23: N(ha)← N(ha) + 1

24: Q(ha)← Q(ha) + total−Q(ha)
N(ha)

25: return total

Bibliography

[1] A.-A. Agha-Mohammadi, S. Chakravorty, and N. M. Amato, “FIRM: Feed-

back controller-based information-state roadmap - a framework for motion

planning under uncertainty,” in IEEE/RSJ International Conference on Intel-

ligent Robots and Systems (IROS), 2011 (cit. on p. 16).

[2] E. Altman, Constrained Markov decision processes. CRC Press, 1999 (cit. on

pp. 6, 10).

[3] M. Araya, O. Buffet, V. Thomas, and F. Charpillet, “A POMDP extension

with belief-dependent rewards,” in Advances in Neural Information Processing

Systems (NIPS), 2010 (cit. on p. 81).

[4] D. Auger, A. Couetoux, and O. Teytaud, “Continuous upper confidence trees

with polynomial exploration–consistency,” in Joint European Conference on

Machine Learning and Knowledge Discovery in Databases, Springer, 2013,

pp. 194–209 (cit. on pp. 78, 79, 109, 111–113, 115).

[5] R. Bach, C. Farrell, and H. Erzberger, “An Algorithm for Level-Aircraft Con-

flict Resolution,” NASA, Tech. Rep. CR-2009-214573, 2009 (cit. on pp. 20,

21).

[6] H. Bai, S. Cai, N. Ye, D. Hsu, and W. S. Lee, “Intention-aware online POMDP

planning for autonomous driving in a crowd,” in IEEE International Confer-

ence on Robotics and Automation (ICRA), 2015, pp. 454–460 (cit. on p. 49).

[7] H. Bai, D. Hsu, M. J. Kochenderfer, and W. S. Lee, “Unmanned aircraft

collision avoidance using continuous-state POMDPs,” in Robotics: Science and

Systems, 2012 (cit. on pp. 20, 21, 31).

118

BIBLIOGRAPHY 119

[8] H. Bai, D. Hsu, and W. S. Lee, “Integrated perception and planning in the

continuous space: A POMDP approach,” International Journal of Robotics

Research, vol. 33, no. 9, pp. 1288–1302, 2014 (cit. on pp. 15, 95).

[9] E. Bargiacchi, AI-Toolbox, https://github.com/Svalorzen/AI-Toolbox

(cit. on p. 96).

[10] D. Bertsekas, Dynamic Programming and Optimal Control. Athena Scientific,

2005 (cit. on pp. 9, 10, 12, 32–34, 36).

[11] J. Bezanson, A. Edelman, S. Karpinski, and V. B. Shah, “Julia: A fresh ap-

proach to numerical computing,” SIAM Review, vol. 59, no. 1, pp. 65–98, 2017

(cit. on pp. 97, 99).

[12] R. Bhattacharyya, D. P. Phillips, B. Wulfe, J. Morton, A. Kuefler, and M. J.

Kochenderfer, “Multi-agent imitation learning for driving simulation,” in IEEE/RSJ

International Conference on Intelligent Robots and Systems (IROS), 2018 (cit.

on p. 109).

[13] J. A. Boyan and A. W. Moore, “Generalization in reinforcement learning:

Safely approximating the value function,” in Advances in Neural Information

Processing Systems, 1995, pp. 369–376 (cit. on p. 37).

[14] S. Boyd and L. Vandenberghe, Convex optimization. Cambridge University

Press, 2004 (cit. on p. 63).

[15] S. Brechtel, T. Gindele, and R. Dillmann, “Solving continuous POMDPs:

Value iteration with incremental learning of an efficient space representation,”

in International Conference on Machine Learning (ICML), 2013 (cit. on p. 49).

[16] S. Brechtel, T. Gindele, and R. Dillmann, “Solving continuous POMDPs:

Value iteration with incremental learning of an efficient space representation,”

in International Conference on Machine Learning (ICML), 2013, pp. 370–378

(cit. on p. 15).

[17] C. B. Browne, E. Powley, D. Whitehouse, et al., “A survey of Monte Carlo

tree search methods,” IEEE Transactions on Computational Intelligence and

AI in games, vol. 4, no. 1, pp. 1–43, 2012 (cit. on pp. 12–14, 49, 90).

https://github.com/Svalorzen/AI-Toolbox

BIBLIOGRAPHY 120

[18] A. Bry and N. Roy, “Rapidly-exploring random belief trees for motion plan-

ning under uncertainty,” in IEEE International Conference on Robotics and

Automation (ICRA), 2011, pp. 723–730 (cit. on p. 16).

[19] M. Buehler, K. Iagnemma, and S. Singh, Eds., The DARPA urban challenge:

Autonomous vehicles in city traffic, ser. Tracts in Advanced Robotics. Springer,

2010, vol. 56, p. 628 (cit. on p. 3).

[20] B. Casey, “Amoral machines, or: How roboticists can learn to stop worrying

and love the law,” Northwestern University Law Review, vol. 111, p. 1347, 2016

(cit. on p. 4).

[21] M. Chen and C. J. Tomlin, “Exact and efficient Hamilton-Jacobi reachability

for decoupled systems,” in IEEE Conference on Decision and Control (CDC),

2015, pp. 1297–1303 (cit. on p. 108).

[22] Y. Chow, A. Tamar, S. Mannor, and M. Pavone, “Risk-sensitive and robust

decision-making: A CVaR optimization approach,” in Advances in Neural In-

formation Processing Systems, 2015, pp. 1522–1530 (cit. on p. 9).

[23] A. Couëtoux, J.-B. Hoock, N. Sokolovska, O. Teytaud, and N. Bonnard, “Con-

tinuous upper confidence trees,” in Learning and Intelligent Optimization,

Rome, Italy, 2011 (cit. on pp. 14, 22, 74).

[24] S. Davies, “Multidimensional triangulation and interpolation for reinforce-

ment learning,” in Advances in Neural Information Processing Systems, 1996,

pp. 1005–1011 (cit. on p. 36).

[25] C. Diuk, A. Cohen, and M. L. Littman, “An object-oriented representation

for efficient reinforcement learning,” in International Conference on Machine

Learning, ACM, 2008, pp. 240–247 (cit. on p. 96).

[26] D. Dolgov, Google self-driving car project monthly report, Google, Inc., Sep.

2016 (cit. on pp. 3, 50).

[27] U. Drepper, What every programmer should know about memory, https://

www.akkadia.org/drepper/cpumemory.pdf, Red Hat, Inc, 2007 (cit. on

p. 105).

https://www.akkadia.org/drepper/cpumemory.pdf
https://www.akkadia.org/drepper/cpumemory.pdf

BIBLIOGRAPHY 121

[28] L. Dressel and M. Kochenderfer, “Efficient decision-theoretic target localiza-

tion,” in International Conference on Automated Planning and Scheduling

(ICAPS), 2017 (cit. on p. 81).

[29] K. Driggs-Campbell and R. Bajcsy, “Identifying modes of intent from driver

behaviors in dynamic environments,” in IEEE International Conference on

Intelligent Transportation Systems (ITSC), 2015 (cit. on p. 49).

[30] Y. Duan, X. Chen, R. Houthooft, J. Schulman, and P. Abbeel, “Benchmarking

deep reinforcement learning for continuous control,” ArXiv:1604.06778, 2016

(cit. on p. 96).

[31] I. Dunning, J. Huchette, and M. Lubin, “JuMP: A modeling language for

mathematical optimization,” SIAM Review, vol. 59, no. 2, pp. 295–320, 2017

(cit. on p. 105).

[32] M. Egorov, Z. N. Sunberg, E. Balaban, T. A. Wheeler, J. K. Gupta, and M. J.

Kochenderfer, “POMDPs.jl: A framework for sequential decision making under

uncertainty,” Journal of Machine Learning Research, vol. 18, no. 26, pp. 1–5,

2017 (cit. on pp. 19, 93).

[33] J. Foster and F. B. Richards, “The Gibbs phenomenon for piecewise-linear

approximation,” The American Mathematical Monthly, vol. 98, no. 1, pp. 47–

49, 1991 (cit. on p. 33).

[34] C. E. Garcia, D. M. Prett, and M. Morari, “Model predictive control: Theory

and practice – a survey,” Automatica, vol. 25, no. 3, pp. 335–348, 1989 (cit. on

p. 58).

[35] A. Geramifard, C. Dann, R. H. Klein, W. Dabney, and J. P. How, “RLPy:

A value-function-based reinforcement learning framework for education and

research,” Journal of Machine Learning Research, vol. 16, pp. 1573–1578, 2015

(cit. on p. 96).

[36] T. Gindele, S. Brechtel, and R. Dillmann, “Learning driver behavior models

from traffic observations for decision making and planning,” IEEE Intelligent

Transportation Systems Magazine, vol. 7, no. 1, pp. 69–79, 2015 (cit. on p. 49).

BIBLIOGRAPHY 122

[37] Global status report on road safety, World Health Organization, 2015. [Online].

Available: http://www.who.int/violence_injury_prevention/road_

safety_status/2015/en/ (cit. on pp. 1, 2).

[38] A. Goldhoorn, A. Garrell, R. Alquézar, and A. Sanfeliu, “Continuous real time

POMCP to find-and-follow people by a humanoid service robot,” in IEEE-RAS

International Conference on Humanoid Robots, 2014 (cit. on p. 73).

[39] I. Goodfellow, Y. Bengio, A. Courville, and Y. Bengio, Deep learning. Cam-

bridge: MIT Press, 2016 (cit. on pp. 33, 47).

[40] M. Grant and S. Boyd, CVX: Matlab software for disciplined convex program-

ming, version 2.1, http://cvxr.com/cvx, Mar. 2014 (cit. on p. 105).

[41] G. Hagen, R. Butler, and J. Maddalon, “Stratway: A modular approach to

strategic conflict resolution,” in AIAA Aviation Technology, Integration, and

Operations (ATIO) Conference, 2011 (cit. on pp. 20, 21).

[42] H. Herencia-Zapana, J.-B. Jeannin, and C. Muñoz, “Formal verification of

safety buffers for sate-based conflict detection and resolution,” in International

Congress of the Aeronautical Sciences, 2010 (cit. on pp. 20, 21).

[43] J. Hoey and P. Poupart, “Solving POMDPs with continuous or large discrete

observation spaces,” in International Joint Conference on Artificial Intelli-

gence (IJCAI), 2005, pp. 1332–1338 (cit. on p. 16).

[44] J. E. Holland, M. J. Kochenderfer, and W. A. Olson, “Optimizing the next

generation collision avoidance system for safe, suitable, and acceptable opera-

tional performance,” Air Traffic Control Quarterly, vol. 21, no. 3, pp. 275–297,

2013 (cit. on pp. 20, 21).

[45] V. Indelman, L. Carlone, and F. Dellaert, “Planning in the continuous do-

main: A generalized belief space approach for autonomous navigation in un-

known environments,” International Journal of Robotics Research, vol. 34, no.

7, pp. 849–882, 2015 (cit. on p. 16).

[46] R. Johnsonbaugh and W. E. Pfaffenberger, Foundations of mathematical anal-

ysis. Dover, 2010 (cit. on p. 12).

http://www.who.int/violence_injury_prevention/road_safety_status/2015/en/
http://www.who.int/violence_injury_prevention/road_safety_status/2015/en/
http://cvxr.com/cvx

BIBLIOGRAPHY 123

[47] L. P. Kaelbling, M. L. Littman, and A. Cassandra, “Planning and acting in par-

tially observable stochastic domains,” Artificial Intelligence, vol. 101, pp. 99–

134, 1998 (cit. on pp. 10, 15, 95, 100).

[48] L. P. Kaelbling and T. Lozano-Pérez, “Finding aircraft collision-avoidance

strategies using policy search methods,” MIT-CSAIL, Tech. Rep. TR-2009-

043, 2009 (cit. on pp. 20, 21).

[49] P. Karkus, D. Hsu, and W. S. Lee, “QMDP-net: Deep learning for planning

under partial observability,” in Advances in Neural Information Processing

Systems, 2017, pp. 4697–4707 (cit. on pp. 17, 95).

[50] A. Kesting, M. Treiber, and D. Helbing, “General lane-changing model MOBIL

for car-following models,” Transportation Research Record, vol. 1999, pp. 86–

94, 2007 (cit. on pp. 52, 71).

[51] ——, “Agents for traffic simulation,” in Multi Agent Systems: Simulation and

Applications, A. M. Uhrmacher and D. Weyns, Eds., CRC Press, 2009, ch. 11,

pp. 325–356 (cit. on pp. 55, 60).

[52] M. J. Kochenderfer, Decision making under uncertainty: Theory and applica-

tion. MIT Press, 2015 (cit. on pp. 9, 10, 12, 46, 79).

[53] M. J. Kochenderfer and J. P. Chryssanthacopoulos, “Robust airborne collision

avoidance through dynamic programming,” MIT Lincoln Laboratory, Tech.

Rep. ATC-371, 2011 (cit. on pp. 20, 21, 24, 31).

[54] M. J. Kochenderfer, J. P. Chryssanthacopoulos, L. P. Kaelbling, and T. Lozano-

Pérez, “Model-based optimization of airborne collision avoidance logic,” MIT

Lincoln Laboratory, Tech. Rep. ATC-360, 2010 (cit. on pp. 20, 21).

[55] M. J. Kochenderfer, J. P. Chryssanthacopoulos, and P. P. Radecki, “Robust-

ness of optimized collision avoidance logic to modeling errors,” in Digital

Avionics Systems Conference, 2010 (cit. on pp. 24, 42).

BIBLIOGRAPHY 124

[56] M. J. Kochenderfer, M. W. M. Edwards, L. P. Espindle, J. K. Kuchar, and

J. D. Griffith, “Airspace encounter models for estimating collision risk,” AIAA

Journal of Guidance, Control, and Dynamics, vol. 33, no. 2, pp. 487–499, 2010

(cit. on p. 24).

[57] J. K. Kuchar and L. C. Yang, “A review of conflict detection and resolution

modeling methods,” IEEE Transactions on Intelligent Transportation Systems,

vol. 1, no. 4, pp. 179–189, 2000 (cit. on p. 20).

[58] H. Kurniawati, D. Hsu, and W. S. Lee, “SARSOP: Efficient point-based POMDP

planning by approximating optimally reachable belief spaces.,” in Robotics:

Science and Systems, Zurich, Switzerland., 2008 (cit. on pp. 15, 95).

[59] H. Kurniawati, D. Hsu, W. S. Lee, and H. Bai, Approximate POMDP Planning

Toolkit, http://bigbird.comp.nus.edu.sg/pmwiki/farm/appl/ (cit. on

p. 96).

[60] H. Kurniawati and V. Yadav, “An online POMDP solver for uncertainty plan-

ning in dynamic environment,” in Robotics Research, Springer, 2016, pp. 611–

629 (cit. on p. 17).

[61] C.-P. Lam, A. Y. Yang, K. Driggs-Campbell, R. Bajcsy, and S. S. Sastry, “Im-

proving human-in-the-loop decision making in multi-mode driver assistance

systems using hidden mode stochastic hybrid systems,” in IEEE/RSJ Inter-

national Conference on Intelligent Robots and Systems (IROS), 2015 (cit. on

p. 49).

[62] C. Lattner and V. Adve, “LLVM: A compilation framework for lifelong pro-

gram analysis & transformation,” in Proceedings of the International Sympo-

sium on Code Generation and Optimization, IEEE Computer Society, 2004,

p. 75 (cit. on p. 97).

[63] J. R. Lepird, M. P. Owen, and M. J. Kochenderfer, “Bayesian preference elicita-

tion for multiobjective engineering design optimization,” Journal of Aerospace

Information Systems, vol. 12, no. 10, pp. 634–645, 2015 (cit. on p. 6).

http://bigbird.comp.nus.edu.sg/pmwiki/farm/appl/

BIBLIOGRAPHY 125

[64] S. Levine and V. Koltun, “Continuous inverse optimal control with locally

optimal examples,” in International Conference on Machine Learning (ICML),

2012, pp. 41–48 (cit. on p. 6).

[65] M. L. Littman, A. R. Cassandra, and L. P. Kaelbling, “Learning policies for

partially observable environments: Scaling up,” in International Conference on

Machine Learning (ICML), 1995 (cit. on pp. 17, 79, 103).

[66] S. Mannor, R. Rubinstein, and Y. Gat, “The cross entropy method for fast pol-

icy search,” in International Conference on Machine Learning (ICML), 2003,

pp. 512–519 (cit. on p. 90).

[67] B. McKenzie, “Who drives to work? Commuting by automobile in the United

States: 2013,” United States Census Bureau, Tech. Rep. ACS-32, Aug. 2015

(cit. on p. 2).

[68] Mean travel time to work of workers 16 years and over who did not work at

home, https://factfinder.census.gov/, United States Census Bureau,

2016 (cit. on p. 2).

[69] N. A. Melchior and R. Simmons, “Particle RRT for path planning with un-

certainty,” in IEEE International Conference on Robotics and Automation

(ICRA), 2007 (cit. on p. 16).

[70] V. Mnih, K. Kavukcuoglu, D. Silver, et al., “Human-level control through deep

reinforcement learning,” Nature, vol. 518, 2015 (cit. on p. 33).

[71] P. Morere, R. Marchant, and F. Ramos, “Bayesian optimisation for solving

continuous state-action-observation POMDPs,” in Advances in Neural Infor-

mation Processing Systems (NIPS), 2016 (cit. on p. 15).

[72] A. Narkawicz, C. Muñoz, and G. Dowek, “Provably correct conflict prevention

bands algorithms,” Science of Computer Programming, vol. 77, no. 10–11,

pp. 1039–1057, 2012 (cit. on pp. 20, 21).

[73] K. Naughton, “Humans are slamming into driverless cars and exposing a key

flaw,” 2015. [Online]. Available: http://bloom.bg/1Qw8fjB (cit. on p. 50).

[74] R. B. Nelsen, An introduction to copulas. Springer, 2007 (cit. on p. 60).

https://factfinder.census.gov/
http://bloom.bg/1Qw8fjB

BIBLIOGRAPHY 126

[75] H. Y. Ong and M. J. Kochenderfer, “Short-term conflict resolution for un-

manned aircraft traffic management,” in Digital Avionics Systems Conference,

2015 (cit. on p. 20).

[76] C. H. Papadimitriou and J. N. Tsitsiklis, “The complexity of Markov decision

processes,” Mathematics of Operations Research, vol. 12, no. 3, pp. 441–450,

1987 (cit. on pp. 11, 94).

[77] A. Pas, “Simulation based planning for partially observable markov decision

processes with continuous observation spaces,” Master’s thesis, Maastricht

University, 2012 (cit. on p. 75).

[78] R. Platt Jr., R. Tedrake, L. Kaelbling, and T. Lozano-Perez, “Belief space

planning assuming maximum likelihood observations,” in Robotics: Science

and Systems, 2010 (cit. on p. 15).

[79] S. Prentice and N. Roy, “The belief roadmap: Efficient planning in belief space

by factoring the covariance,” International Journal of Robotics Research, vol.

28, no. 11-12, pp. 1448–1465, 2009 (cit. on p. 16).

[80] E. J. Rodrǵuez-Seda, “Decentralized Trajectory Tracking with Collision Avoid-

ance Control for Teams of Unmanned Vehicles with Constant Speed,” in Amer-

ican Control Conference, 2014 (cit. on pp. 20, 24).

[81] S. Ross, J. Pineau, S. Paquet, and B. Chaib-Draa, “Online planning algorithms

for POMDPs,” Journal of Artificial Intelligence Research, vol. 32, pp. 663–704,

2008 (cit. on p. 16).

[82] D. Sadigh, K. Driggs-Campbell, A. Puggelli, et al., “Data-driven probabilistic

modeling and verification of human driver behavior,” in AAAI Spring Sympo-

sium on Formal Verification and Modeling in Human-Machine Systems, 2014

(cit. on p. 49).

[83] D. Sadigh and A. Kapoor, “Safe control under uncertainty with probabilistic

signal temporal logic,” in Robotics: Science and Systems, 2016 (cit. on p. 108).

BIBLIOGRAPHY 127

[84] D. Sadigh, S. S. Sastry, S. A. Seshia, and A. Dragan, “Information gathering

actions over human internal state,” in IEEE/RSJ International Conference on

Intelligent Robots and Systems (IROS), 2016 (cit. on p. 49).

[85] ——, “Planning for autonomous cars that leverage effects on human actions,”

in Robotics: Science and Systems, 2016 (cit. on p. 6).

[86] G. Sandoval, “Alphabet says 2 of its ambitious side projects are ready for the

big leagues,” Business Insider, Jul. 2018. [Online]. Available: http://www.

businessinsider.com/alphabet-projects-wing-loon-graduate-into-

standalone-businesses-2018-7 (cit. on p. 3).

[87] S. Sanner, “Relational dynamic influence diagram language (RDDL): Lan-

guage description,” 2010, [Online]. Available: http://users.cecs.anu.edu.

au/~ssanner/IPPC_2011/RDDL.pdf (cit. on p. 98).

[88] E. Schmerling, K. Leung, W. Vollprecht, and M. Pavone, “Multimodal proba-

bilistic model-based planning for human-robot interaction,” in IEEE Interna-

tional Conference on Robotics and Automation (ICRA), Brisbane, Australia,

May 2018 (cit. on pp. 71, 109).

[89] B. Schoettle and M. Sivak, “A preliminary analysis of real-world crashes in-

volving self-driving vehicles,” University of Michigan Transportation Research

Institute, Tech. Rep. UMTRI-2015-34, 2015 (cit. on p. 49).

[90] K. M. Seiler, H. Kurniawati, and S. P. N. Singh, “An online and approxi-

mate solver for POMDPs with continuous action space,” in IEEE Interna-

tional Conference on Robotics and Automation (ICRA), 2015, pp. 2290–2297

(cit. on pp. 74, 110).

[91] H. Shaban, “Amazon is issued patent for delivery drones that can react to

screaming voices, flailing arms,” The Washington Post, Mar. 2018. [Online].

Available: https://www.washingtonpost.com/news/the-switch/wp/2018/

03/22/amazon-issued-patent-for-delivery-drones-that-can-react-

to-screaming-flailing-arms (cit. on p. 3).

http://www.businessinsider.com/alphabet-projects-wing-loon-graduate-into-standalone-businesses-2018-7
http://www.businessinsider.com/alphabet-projects-wing-loon-graduate-into-standalone-businesses-2018-7
http://www.businessinsider.com/alphabet-projects-wing-loon-graduate-into-standalone-businesses-2018-7
http://users.cecs.anu.edu.au/~ssanner/IPPC_2011/RDDL.pdf
http://users.cecs.anu.edu.au/~ssanner/IPPC_2011/RDDL.pdf
https://www.washingtonpost.com/news/the-switch/wp/2018/03/22/amazon-issued-patent-for-delivery-drones-that-can-react-to-screaming-flailing-arms
https://www.washingtonpost.com/news/the-switch/wp/2018/03/22/amazon-issued-patent-for-delivery-drones-that-can-react-to-screaming-flailing-arms
https://www.washingtonpost.com/news/the-switch/wp/2018/03/22/amazon-issued-patent-for-delivery-drones-that-can-react-to-screaming-flailing-arms

BIBLIOGRAPHY 128

[92] D. Silver, A. Huang, C. J. Maddison, et al., “Mastering the game of Go with

deep neural networks and tree search,” Nature, vol. 529, no. 7587, pp. 484–489,

2016 (cit. on p. 16).

[93] D. Silver and J. Veness, “Monte-Carlo planning in large POMDPs,” in Ad-

vances in Neural Information Processing Systems (NIPS), 2010 (cit. on p. 83).

[94] S. Singh, “Critical reasons for crashes investigated in the national motor ve-

hicle crash causation survey,” National Highway Traffic Safety Administra-

tion, Tech. Rep. DOT HS 812 115, Feb. 2015. [Online]. Available: https:

//crashstats.nhtsa.dot.gov/Api/Public/ViewPublication/812115 (cit.

on p. 2).

[95] Small unmanned aircraft systems, 14 C.F.R. §107, 2018 (cit. on p. 24).

[96] T. Smith, ZMDP software for POMDP planning, https://github.com/

trey0/zmdp (cit. on p. 96).

[97] A. Somani, N. Ye, D. Hsu, and W. S. Lee, “DESPOT: Online POMDP planning

with regularization,” in Advances in Neural Information Processing Systems

(NIPS), 2013, pp. 1772–1780 (cit. on pp. 17, 84).

[98] Z. N. Sunberg, C. J. Ho, and J. Kochenderfer Mykel, “The value of inferring

the internal state of traffic participants for autonomous freeway driving,” in

American Control Conference (ACC), 2017 (cit. on p. 19).

[99] Z. N. Sunberg and M. J. Kochenderfer, “Online algorithms for POMDPs with

continuous state, action, and observation spaces,” in International Conference

on Automated Planning and Scheduling (ICAPS), Delft, 2018 (cit. on p. 19).

[100] Z. Sunberg, M. Kochenderfer, and M. Pavone, “Optimized and trusted collision

avoidance for unmanned aerial vehicles using approximate dynamic program-

ming,” in Proc. IEEE Conf. on Robotics and Automation, 2016 (cit. on p. 19).

[101] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction. MIT

Press, 1998 (cit. on p. 8).

https://crashstats.nhtsa.dot.gov/Api/Public/ViewPublication/812115
https://crashstats.nhtsa.dot.gov/Api/Public/ViewPublication/812115
https://github.com/trey0/zmdp
https://github.com/trey0/zmdp

BIBLIOGRAPHY 129

[102] S. Temizer, M. J. Kochenderfer, L. P. Kaelbling, T. Lozáno-Perez, and J. K.

Kuchar, “Collision avoidance for unmanned aircraft using markov decision

processes,” in AIAA Guidance, Navigation, and Control Conference, 2010 (cit.

on pp. 20, 21).

[103] S. Thrun, “Monte Carlo POMDPs,” in Advances in Neural Information Pro-

cessing Systems (NIPS), vol. 12, 1999, pp. 1064–1070 (cit. on p. 15).

[104] S. Thrun, W. Burgard, and D. Fox, Probabilistic robotics. MIT Press, 2005

(cit. on p. 14).

[105] C. Tomlin, G. J. Pappas, and S. S. Sastry, “Conflict resolution for air traffic

management: A study in multiagent hybrid systems,” IEEE Transactions on

Automatic Control, vol. 43, no. 4, pp. 509–21, 1998 (cit. on p. 24).

[106] M. Treiber, A. Hennecke, and D. Helbing, “Congested traffic states in empirical

observations and microscopic simulations,” Physical Review E, vol. 62, no. 2,

pp. 1805–1824, 2000 (cit. on pp. 52, 71).

[107] C. Urmson, J. Anhalt, D. Bagnell, et al., Tartan racing: A multi-modal ap-

proach to the DARPA urban challenge, http://repository.cmu.edu/cgi/

viewcontent.cgi?article=1967&context=robotics, Carnegie Mellon Uni-

versity, 2007 (cit. on p. 4).

[108] J. Van Den Berg, S. Patil, and R. Alterovitz, “Motion planning under uncer-

tainty using iterative local optimization in belief space,” International Journal

of Robotics Research, vol. 31, no. 11, pp. 1263–1278, 2012 (cit. on p. 16).

[109] E. Wang, H. Kurniawati, and D. P. Kroese, “An online planner for POMDPs

with large discrete action space: A quantile-based approach,” in International

Conference on Automated Planning and Scheduling (ICAPS), 2018 (cit. on

pp. 74, 110).

[110] T. A. Wheeler, P. Robbel, and M. J. Kochenderfer, “A probabilistic frame-

work for microscopic traffic propagation,” in IEEE International Conference

on Intelligent Transportation Systems (ITSC), Las Palmas de Gran Canaria,

Spain, 2015 (cit. on p. 49).

http://repository.cmu.edu/cgi/viewcontent.cgi?article=1967&context=robotics
http://repository.cmu.edu/cgi/viewcontent.cgi?article=1967&context=robotics

BIBLIOGRAPHY 130

[111] C. Xiao, J. Mei, and M. Müller, “Memory-augmented Monte Carlo tree search,”

in AAAI Conference on Artificial Intelligence (AAAI), 2018 (cit. on p. 110).

[112] R. Zhang and M. Pavone, “Control of robotic mobility-on-demand systems: A

queueing-theoretical perspective,” International Journal of Robotics Research,

2015 (cit. on p. 2).

	Abstract
	Acknowledgements
	Introduction
	Autonomous Vehicles
	Benefits of Autonomous Transportation
	Current Progress
	Remaining Challenges

	Decision Making Under Uncertainty
	Optimization objective
	Uncertainty in Decision Making
	Markov Decision Processes
	Partially Observable Markov Decision Processes
	Value Iteration
	Monte Carlo Tree Search
	Particle Filtering
	Approximate Solutions to POMDPs
	QMDP

	Contributions and Outline

	Trusted and Optimized UAV Collision Avoidance
	Collision Avoidance for UAVs
	MDP Models
	Model Assumptions
	Vehicle States and Dynamics
	Transition Function
	Reference Trusted Resolution Logic
	Action Spaces and Control Systems
	Reward
	Problem statement

	Solution Approach
	Approximate Value Iteration
	Post Decision Value Function Extraction
	Online Policy Evaluation
	Selection of Features

	Results
	Policies
	Numerical Performance Evaluation

	Discussion

	Planning with Internal States in Driving
	Human Interaction in Autonomous Driving
	Freeway Driving POMDP
	Driver Modeling
	Physical Dynamics
	Action Space for Crash-Free Driving
	Reward Function and Objectives
	Initial Scenes

	Solution Approaches
	Approach 1: Assume normal behavior
	Approach 2: Model all uncertainty as outcome uncertainty (Naive MDP)
	Approach 3: Mean Model Predictive Control
	Approach 4: QMDP
	Approach 5: POMCPOW

	Results
	Driver Model Distribution Scenarios
	Pareto Front Comparison
	Correlation comparison
	Robustness

	Discussion

	Online Algorithms for Continuous POMDPs
	Background
	Algorithms
	POMCP-DPW
	PFT-DPW
	POMCPOW
	Discretization
	Observation Distribution Requirement

	Experiments
	Laser Tag
	Light Dark
	Sub Hunt
	Van Der Pol Tag
	Multilane
	Discretization granularity
	Hyperparameters

	Discussion

	A Julia Framework for POMDPs
	Challenges for POMDP-solving software
	Speed
	Flexibility
	Ease of Use

	Previous frameworks
	Architecture
	Concepts
	Interfaces

	Examples
	Problem
	Solver
	Simulator

	Discussion

	Summary and Future Work
	Contributions and Summary
	Future Work

	Proof of Theorem 1

